scholarly journals Beneficial effects of silymarin against nitric oxide-induced oxidative stress on cell characteristics of bovine oviduct epithelial cell and developmental ability of bovine IVF embryos

2013 ◽  
Vol 42 (2) ◽  
pp. 166-176
Author(s):  
H.Y. Jang ◽  
I.C. Park ◽  
I.S. Yuh ◽  
H.T. Cheong ◽  
J.T. Kim ◽  
...  
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yanti Octavia ◽  
Elza v Deel ◽  
Monique d Waard ◽  
Martine d Boer ◽  
An Moens ◽  
...  

AIMS: Beneficial effects of aerobic exercise training are widely recognized. However, previously we discovered that the positive effects of exercise depend on the underlying cause of cardiac failure. Here we tested the hypothesis that endothelial nitric oxide synthase (eNOS) dependent regulation of the balance between nitric oxide and superoxide (O2•-) is critically involved in determining the effects of exercise. METHODS: Mice were exposed to 8 weeks of voluntary wheel running exercise training (EX) or sedentary housing (SED) immediately following myocardial infarction (MI), pressure overload from a transverse aortic constriction (TAC), or sham (SH) surgery. Subsequently, left ventricular (LV) ejection fraction (EF) was measured by echocardiography and Picrosirius Red staining was performed to measure collagen content. Additionally, total and NOS-dependent LV O2•- were measured using lucigenin-enhanced chemiluminescence without or with NOS inhibitor, L-NAME. eNOS uncoupling was evaluated by determining eNOS monomer dimer protein ratio and peroxynitrite (ONOO-) levels were measured through luminol-enhanced chemiluminescence. RESULTS: Cardiac dysfunction and fibrosis were ameliorated by exercise in MI but not in TAC mice (Table 1). MI and TAC both increased LV O2•- levels. Strikingly, EX diminished O2•- generation in MI, but exacerbated O2•- generation in TAC (Table 1). Furthermore, the EX-induced increase in O2•- levels in TAC were largely NOS-dependent. Accordingly, MI and TAC-induced eNOS uncoupling was normalized by EX in MI but aggravated in TAC mice (Table 1). Similarly, increased ONOO- levels following MI and TAC were diminished by EX in MI, but exacerbated by EX in TAC (Table 1). CONCLUSIONS: EX reduces eNOS-mediated cardiac oxidative stress in MI. In contrast, beneficial effects of EX are lacking in cardiac pressure-overload following TAC, due to EX-induced aggravation of ONOO- formation, eNOS uncoupling and concomitant oxidative stress.


Author(s):  
Arunabha Ray ◽  
Md Shamsuzzaman ◽  
Jagdish C. Joshi ◽  
Kavita Gulati ◽  
Arunabha Ray

Methylxanthines are potent bronchodilators used in obstructive airway disease like COPD and bronchial asthma, but the narrow therapeutic index and resultant adverse effect profile have restricted their use. Novel beneficial effects and modes of action are now being proposed for these pharmacoeconomically viable agents. Cardiotoxicity is a prominent adverse effect of methylxanthone and thus we investigated possible mechanisms for such toxicity with an aim to devise ameliorative strategies for counteracting such undesirable effects. In view of the cardioprotective role of nitric oxide (NO) and NO mimetics, the present study investigated the possible modulatory role of L-arginine, a NO precursor, in theophylline induced cardiotoxicity in rats, with a view to exploring strategies for facilitating the safe use of this drug. The methylxanthine, aminophylline induced cardiotoxic effects like increased heart rat, raised mean BP, inverted T-waves and prolonged QTc interval (in ECG). These were accompanied by increased levels of cardiac biomarkers like Troponin-I, CPK-MB, and ADMA. Oxidative stress markers like MDA were elevated whereas, antioxidant defence markers like GSH and SOD were suppressed. Co-administration of L-arginine (with aminophylline) had dose-related effects on cardiac function (heart rate, mean BP, ECG changes) and cardiospecific biomarkers (TnI, CPK-MB, ADMA) - the lower dose being protective whereas the higher dose potentiating some of the cardiac effects and cardiospecific/oxidative stress biomarker levels. The results indicate a biphasic involvement of NO in the cardiotoxic effect of theophylline and suggests possible interactions of NO with reactive oxygen species during such modulations of cardiotoxicity.


2017 ◽  
Vol 1 (1) ◽  
pp. 13-26
Author(s):  
Omar M.E. Abdel-Salam ◽  
Nermeen M. Shaffie ◽  
Nadia A. Mohammed ◽  
Eman R. Youness ◽  
Safaa M. Youssef Morsy ◽  
...  

We aimed to study the effect of buspirone, an anxiolytic drug and 5-HT1A agonist on liver injury induced by carbon tetrachloride (CCl4) in rats. Rats were orally treated with CCl4 (2.8 mL/kg in olive oil) along with buspirone at 10, 20 or 30 mg/kg once daily starting with CCl4 and for one week thereafter. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities were determined in the serum. Markers of oxidative stress: lipid peroxidation (malondialdehyde; MDA), reduced glutathione (GSH), nitric oxide (nitrite/nitrate) levels were measured in the liver. Moreover, paraoxonase 1 activity was determined in the liver and serum. The administration of CCl4 led to significant increases in serum ALT, AST, and ALP activities. Results showed that there were significantly increased hepatic MDA, nitrite and decreased GSH levels. PON1 activity decreased both in the liver and serum, respectively. The immunohistochemical investigations using anti-caspase-3 antibody revealed that CCl4 caused apoptosis to many hepatocytes. DNA studies showed that CCl4 caused hypoploidy in hepatocytes. Rats treated with 20-30 mg/kg buspirone showed significant decrease in serum ALT and AST by 19.5-34.3% and 24.2-31.4%, respectively. Serum ALP decreased by 21.7% after 30 mg/kg buspirone. In the liver, the higher dose of the drug resulted in decreased MDA (by 15.8%), decreased nitric oxide (17.4%) and increased GSH (by 20.1%). Significantly increased serum PON1 activity by 43.9-53.5% was observed after treatment with 20-30 mg/kg buspirone. On histopathologic examination of liver sections, there was mild protective effect for the drug at 30 mg/kg. Sections stained with anti- caspase- 3 confirmed the results obtained from histopathological examination. Moreover, buspirone given at 30 mg/kg resulted in an increase in % of cells containing normal values of DNA. These results indicate that buspirone decreases liver oxidative stress and exerts protective effect against CCl4- toxicity. The study thus indicates more beneficial effects of buspirone as an anxiolytic drug and that the drug could be used safely in patients with liver disease.


Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar Reddy G ◽  
Sujitha V ◽  
Manasa A

DM otherwise diabetes is now a days an epidemic with the percentage of patient population rising to almost 10% of the world population. Out of all the DM complications, cataract leads the way contributing to disabilities to about 60% of diabetic population. But the pathogenesis of DM cataract is still a half-understood area of medicine there by posing a problem in the therapy. The data that we have till now gives us enough evidence to advocate the oxidative stress has a major role for the pathogenesis of DM complications like DMnephropathy, DMneuropathy, and cardiac hypertrophy, which suggests the oxidative stress is a central feature of diabetes. In the current research, the pharmacological evaluation of Fisetin for its DM based anti-cataract property was performed. This research concentrates to estimate the possible involvement of Nrf-2 / heme oxygenase (HO)-pathway in the observed therapeutic effect, if any. The data obtained in this study also indicate that the observed beneficial effects mainly due to activation of Nrf2/HO-1 pathway. These effects probably result in increased tissue anti-oxidant status as well as decreased free radical production, which ultimately responsible for the observed beneficial effects of Fisetin against hyperglycemia-induced cataract.


2020 ◽  
Vol 16 (9) ◽  
pp. 1319-1327
Author(s):  
Ferdous Khan ◽  
Syed A. Kuddus ◽  
Md. H. Shohag ◽  
Hasan M. Reza ◽  
Murad Hossain

Background: An imbalance between pro-oxidants and antioxidants determines the level of oxidative stress which is implicated in the etiopathogenesis of various neuropsychiatric disorders including depression. Therefore, treatment with antioxidants could potentially improve the balance between pro-oxidants and antioxidants. Objective: The objective of this study was to evaluate the ability of astaxanthin, a potential antioxidant, to reduce reserpine-induced depression in BALB/c mice (Mus musculus). Methods: On the behavioral level, antidepressant property of astaxanthin (50 mg/kg, orally) on reserpine (2 mg/kg, subcutaneously) induced depressed mice was evaluated by Forced Swim Test (FST) and Tail Suspension Test (TST). In the biochemical level, the ability of astaxanthin to mitigate reserpine-induced oxidative stress was evaluated by the measurement of Malondialdehyde (MDA) and nitric oxide (NO) in brain, liver and plasma samples. On the other hand, the efficiency of astaxanthin to replenish glutathione depletion and antioxidant enzyme activity augmentation in the same samples were also investigated. Results: Astaxanthin was able to lower reserpine induced immobility time significantly (p<0.05) in FST and TST. Mice treated with astaxanthin showed significantly (p<0.05) low level of oxidative stress markers such as Malondialdehyde (MDA), Nitric Oxide (NO). Consistently, the level of reduced Glutathione (GSH), and the activity of Superoxide Dismutase (SOD) and catalase were augmented due to the oral administration of astaxanthin. Conclusion: This study suggests that astaxanthin reduces reserpine-induced oxidative stress and therefore might be effective in treating oxidative stress associated depression.


2012 ◽  
Vol 11 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Seyhan Sahan-Firat ◽  
Necmiye Canacankatan ◽  
Belma Korkmaz ◽  
Hatice Yildirim ◽  
Lulufer Tamer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document