Surface Characteristics and Bioactivity of Oxide Films with Haloid Ions Formed by Micro-Arc Oxidation on Titanium in Vitro

2011 ◽  
Vol 26 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Jianxue Li ◽  
Guofeng Wu ◽  
Jiang Jiang ◽  
Yimin Zhao
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 618
Author(s):  
Jinyoung Kim ◽  
Hyun Lee ◽  
Tae-Sik Jang ◽  
DongEung Kim ◽  
Chang-Bun Yoon ◽  
...  

As biocompatible metallic materials, titanium and its alloys have been widely used in the orthopedic field due to their superior strength, low density, and ease of processing. However, further improvement in biological response is still required for rapid osseointegration. Here, various Ti surface-treatment technologies were applied: hydroxyapatite blasting, sand blasting and acid etching, anodic oxidation, and micro-arc oxidation. The surface characteristics of specimens subjected to these techniques were analyzed in terms of structure, elemental composition, and wettability. The adhesion strength of the coating layer was also assessed for the coated specimens. Biocompatibility was compared via tests of in vitro attachment and proliferation of pre-osteoblast cells.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 473
Author(s):  
Dilyana Gospodonova ◽  
Iliana Ivanova ◽  
Todorka Vladkova

The aim of this study was to prepare TiO2/Ag/Cu magnetron co-sputtered coatings with controlled characteristics and to correlate them with the antimicrobial activity of the coated glass samples. The elemental composition and distribution, surface morphology, wettability, surface energy and its component were estimated as the surface characteristics influencing the bioadhesion. Well expressed, specific, Ag/Cu concentration-dependent antimicrobial activity in vitro was demonstrated toward Gram-negative and Gram-positive standard test bacterial strains both by diffusion 21 assay and by Most Probable Number of surviving cells. Direct contact and eluted silver/coper nanoparticles killing were experimentally demonstrated as a mode of the antimicrobial action of the studied TiO2/Ag/Cu thin composite coatings. It is expected that they would ensure a broad spectrum bactericidal activity during the indwelling of the coated medical devices and for at least 12 h after that, with the supposition that the benefits will be over a longer time.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 150
Author(s):  
Genís Rabost-Garcia ◽  
Josep Farré-Lladós ◽  
Jasmina Casals-Terré

Skin models offer an in vitro alternative to human trials without their high costs, variability, and ethical issues. Perspiration models, in particular, have gained relevance lately due to the rise of sweat analysis and wearable technology. The predominant approach to replicate the key features of perspiration (sweat gland dimensions, sweat rates, and skin surface characteristics) is to use laser-machined membranes. Although they work effectively, they present some limitations at the time of replicating sweat gland dimensions. Alternative strategies in terms of fabrication and materials have also showed similar challenges. Additional research is necessary to implement a standardized, simple, and accurate model representing sweating for wearable sensors testing.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3693
Author(s):  
Yurii P. Sharkeev ◽  
Ekaterina G. Komarova ◽  
Valentina V. Chebodaeva ◽  
Mariya B. Sedelnikova ◽  
Aleksandr M. Zakharenko ◽  
...  

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility. The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53 to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1913
Author(s):  
Luminita Nicoleta Dumitrescu ◽  
Madalina Icriverzi ◽  
Anca Bonciu ◽  
Anca Roșeanu ◽  
Antoniu Moldovan ◽  
...  

In the last decades, optimizing implant properties in terms of materials and biointerface characteristics represents one of the main quests in biomedical research. Modifying and engineering polyvinylidene fluoride (PVDF) as scaffolds becomes more and more attractive to multiples areas of bio-applications (e.g., bone or cochlear implants). Nevertheless, the acceptance of an implant is affected by its inflammatory potency caused by surface-induced modification. Therefore, in this work, three types of nano-micro squared wells like PVDF structures (i.e., reversed pyramidal shape with depths from 0.8 to 2.5 microns) were obtained by replication, and the influence of their characteristics on the inflammatory response of human macrophages was investigated in vitro. FTIR and X-ray photoelectron spectroscopy analysis confirmed the maintaining chemical structures of the replicated surfaces, while the topographical surface characteristics were evaluated by AFM and SEM analysis. Contact angle and surface energy analysis indicated a modification from superhydrophobicity of casted materials to moderate hydrophobicity based on the structure’s depth change. The effects induced by PVDF casted and micron-sized reversed pyramidal replicas on macrophages behavior were evaluated in normal and inflammatory conditions (lipopolysaccharide treatment) using colorimetric, microscopy, and ELISA methods. Our results demonstrate that the depth of the microstructured surface affects the activity of macrophages and that the modification of topography could influence both the hydrophobicity of the surface and the inflammatory response.


2014 ◽  
Vol 5 (2) ◽  
pp. 81-86
Author(s):  
Hossam A Eid ◽  
Khalid M Abdelaziz ◽  
Refaat A Eid

ABSTRACT Objective Advanced glycosylated end products (AGEs) in type II diabetic patients are usually precipitated on the periodontallyaffected root surfaces. The presence of periodontopathic microbes, at the same time, may also add a negative impact on the prognosis of the regenerative periodontal surgery. This in vitro study aimed to evaluate the effect of chemical conditioning on surface characteristics of periodontally-affected roots of diabetic patients. Methods Three groups (n = 25) of freshly-extracted teeth were collected from the outpatient clinics, College of Dentistry, King Khalid University. In group 1, teeth were collected from healthy individuals for orthodontic purpose. Teeth of group 2 were collected from healthy patients with chronic periodontitis, while those of group 3 were collected from diabetic patients with chronic periodontitis. Roots of the collected teeth were examined using the scanning electron microscope (SEM) before and after mechanical surface planning and chemical treatment using normal saline, EDTA gel, Tetracycline HCL (TC) or citric acid (CA) each for 4 minutes (n = 5 from each group). Results Interpretation of SEM images revealed undesirable etching effect of the chemicals used on the surfaces of healthy roots. Although EDTA showed an effective cleanse of the smear debris, it seemed to have no power on surface cuticles existed on roots of diabetic individuals. Tetracycline HCl provided acceptable conditioning of periodontally-affected root surfaces. Citric acid showed a powerful removal of both smear debris and cuticle layers off the periodontally-affected roots of diabetic individuals. Conclusion Topical application of EDTA, TC or CA shows sensible effect on the periodontally affected root surfaces. However, each of these chemicals exhibits different conditioning power. Citric acid is a promising agent to biomodify the periodontally-affected root surfaces of diabetic patients. Clinical relevance Citric acid is an acceptable biomodifier for the periodontally-affected root surfaces. This approach may improve the prognosis of periodontal therapies especially in type II diabetic patients. How to cite this article Abdelaziz KM, Eid HA, Eid RA. Effect of Bioconditioning on Surface Characteristics of Periodontally- affected Roots of Diabetic Patients. World J Dent 2014;5(2):81-86.


Sign in / Sign up

Export Citation Format

Share Document