Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices

2020 ◽  
Vol 11 (8) ◽  
pp. 777-786 ◽  
Author(s):  
Rajeev Bhattarai ◽  
Parinaz Rahimzadeh-Bajgiran ◽  
Aaron Weiskittel ◽  
David A. MacLean
2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


2020 ◽  
Vol 58 (2) ◽  
pp. 826-840 ◽  
Author(s):  
Yuanheng Sun ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Tianyuan Zhang ◽  
Shanshan Chen

2014 ◽  
Vol 157 ◽  
pp. 111-123 ◽  
Author(s):  
Fei Li ◽  
Yuxin Miao ◽  
Guohui Feng ◽  
Fei Yuan ◽  
Shanchao Yue ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 1176 ◽  
Author(s):  
Yukun Lin ◽  
Zhe Zhu ◽  
Wenxuan Guo ◽  
Yazhou Sun ◽  
Xiaoyuan Yang ◽  
...  

Monitoring cotton status during the growing season is critical in increasing production efficiency. The water status in cotton is a key factor for yield and cotton quality. Stem water potential (SWP) is a precise indicator for assessing cotton water status. Satellite remote sensing is an effective approach for monitoring cotton growth at a large scale. The aim of this study is to estimate cotton water stress at a high temporal frequency and at a large scale. In this study, we measured midday SWP samples according to the acquisition dates of Sentinel-2 images and used them to build linear-regression-based and machine-learning-based models to estimate cotton water stress during the growing season (June to August, 2018). For the linear-regression-based method, we estimated SWP based on different Sentinel-2 spectral bands and vegetation indices, where the normalized difference index 45 (NDI45) achieved the best performance (R2 = 0.6269; RMSE = 3.6802 (-1*swp (bars))). For the machine-learning-based method, we used random forest regression to estimate SWP and received even better results (R2 = 0.6709; RMSE = 3.3742 (-1*swp (bars))). To find the best selection of input variables for the machine-learning-based approach, we tried three different data input datasets, including (1) 9 original spectral bands (e.g., blue, green, red, red edge, near infrared (NIR), and shortwave infrared (SWIR)), (2) 21 vegetation indices, and (3) a combination of original Sentinel-2 spectral bands and vegetation indices. The highest accuracy was achieved when only the original spectral bands were used. We also found the SWIR and red edge band were the most important spectral bands, and the vegetation indices based on red edge and NIR bands were particularly helpful. Finally, we applied the best approach for the linear-regression-based and the machine-learning-based methods to generate cotton water potential maps at a large scale and high temporal frequency. Results suggests that the methods developed here has the potential for continuous monitoring of SWP at large scales and the machine-learning-based method is preferred.


Author(s):  
Yanjie Wang ◽  
Qinhong Liao ◽  
Guijun Yang ◽  
Haikuan Feng ◽  
Xiaodong Yang ◽  
...  

In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn’t show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.


2020 ◽  
Author(s):  
Maria P. González-Dugo ◽  
Pedro J. Gómez-Giraldez ◽  
María J. Pérez-Palazón ◽  
María J. Polo

<p>Annual grasslands are an essential component of Mediterranean oak savannas, the most extensive agroforestry system in Europe, as the primary source of fodder for livestock and wildlife. Monitoring its phenology is key to adequately assess the impacts of global warming on different time scales and identify pre-critical states in the framework of early warning decision making systems. The natural variability of the climatic-hydrological regime in these areas and the usually complex spatial patterns of the vegetation, with sparse distribution and multiple layers, encourage the exploitation of available data from remote sensing sources. This work presents an assessment of vegetation indexes (VI) from Sentinel-2 validated against field data from terrestrial photography in an oak-grass system in southern Spain as a multi-approach method to monitor phenology in grass pastures. The analysis also has provided an insight into the links of the phenology dynamics with hydrological variables under these conditions.</p><p>From December 2017 to May 2019 a quantitative value of grassland greenness was computed using the Green Chromatic Coordinate (GCC) index. The phenological parameters of the start of the season (SOS), the peak of the season (POS) and end of the season (EOS) were extracted using the 50% amplitude method and confirmed using field photography. These values were compared with those provided by eight VI's derived from Sentinel-2 (NDVI, GNDVI, SAVI, EVI, EVI2, MTCI, IRECI and S2REP) and the difference in days between the key phenological dates were estimated. The results showed that for annual grasslands NDVI was the index providing estimations closest to those of ground GCC, with differences below 10 days for all phenological dates and the best correlation with GCC values (r = 0.83, p <0.001). None of the VIs using bands in the red-edge region have improved the NDVI results. Two of them, MTCI and S2REP, followed a different trend that the rest of explored indices, presenting a high temporal variability. The high diversity of species, typical of Mediterranean grasslands, might explain the high variability observed in these values. However, the third index using red-edge bands, IRECI, presented a high correlation with GCC. In this case, the index was designed to focus on the chlorophyll content of the canopy instead of the leaf scale addressed by S2REP. The influence of the vegetation ground coverage and foliage density is then higher and more similar to the broad-band indices. GNDVI also provided good general results. Soil moisture (SM) time-series were also used to estimate phenology and have presented a good agreement with GCC in SOS and EOS estimations, with SM reaching threshold values a few days before greenness ones, as measured by GCC. However, SM was not a good indicator of the POS, presenting significant biases with respect to GCC estimations.</p>


2017 ◽  
Vol 8 (2) ◽  
pp. 338-342 ◽  
Author(s):  
J. González-Piqueras ◽  
H. Lopez-Corcoles ◽  
S. Sánchez ◽  
J. Villodre ◽  
V. Bodas ◽  
...  

Intensive agriculture has the objective to increase nutrients use efficiency. Nitrogen (N) is a key nutrient for crops and the estimations of crop N status allow adjusting the fertilization levels to crop requirements, while reducing the environmental costs and optimizing the benefits for farmers. In this work the N status of wheat in a commercial plot has been monitored, varying the N supply taking into account the variability of the soil. The N content in the cover has been monitored simultaneously by sampling at field level and by using vegetation indices based on reflectance in the red-edge band. The results of the field campaign along a crop growth cycle show that the REP, MTCI, AIVI and CCCI calculated from narrow spectral bands show good linear correlations (R2>0.93) with respect to N content (g·m−2). These indices are stable when passing to broad bands as the case of Sentinel 2 with R2>0.9.


2019 ◽  
Vol 11 (11) ◽  
pp. 1303 ◽  
Author(s):  
Shangrong Lin ◽  
Jing Li ◽  
Qinhuo Liu ◽  
Longhui Li ◽  
Jing Zhao ◽  
...  

Gross primary productivity (GPP) is the most important component of terrestrial carbon flux. Red-edge (680–780 nm) reflectance is sensitive to leaf chlorophyll content, which is directly correlated with photosynthesis as the pigment pool, and it has the potential to improve GPP estimation. The European Space Agency (ESA) Sentinel-2A and B satellites provide red-edge bands at 20-m spatial resolution on a five-day revisit period, which can be used for global estimation of GPP. Previous studies focused mostly on improving cropland GPP estimation using red-edge bands. In this study, we firstly evaluated the relationship between eight vegetation indices (VIs) retrieved from Sentinel-2 imagery in association with incident photosynthetic active radiation (PARin) and carbon flux tower GPP (GPPEC) across three forest and two grassland sites in Australia. We derived a time series of five red-edge VIs and three non-red-edge VIs over the CO2 flux tower footprints at 16-day time intervals and compared both temporal and spatial variations. The results showed that the relationship between the red-edge index (CIr, ρ 783 ρ 705 − 1 ) multiplied by PARin and GPPEC had the highest correlation (R2 = 0.77, root-mean-square error (RMSE) = 0.81 gC∙m−2∙day−1) at the two grassland sites. The CIr also showed consistency (rRMSE defined as RMSE/mean GPP, lower than 0.25) across forest and grassland sites. The high spatial resolution of the Sentinel-2 data provided more detailed information to adequately characterize the GPP variance at spatially heterogeneous areas. The high revisit period of Sentinel-2 exhibited temporal variance in GPP at the grassland sites; however, at forest sites, the flux-tower-based GPP variance could not be fully tracked by the limited satellite images. These results suggest that the high-spatial-resolution red-edge index from Sentinel-2 can improve large-scale spatio-temporal GPP assessments.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Radosław Gurdak ◽  
Maciej Bartold

AbstractThe increase in demand for food and the need to predict the impact of a warming climate on vegetation makes it critical that the best tools for assessing crop production are found. Chlorophyll fluorescence (ChlF) has been proposed as a direct indicator of photosynthesis and plant condition. The aim of this paper is to study the feasibility of estimating ChlF from spectral vegetation indices derived from Sentinel-2, in order to monitor crop stress and investigate ChlF changes in response to surface temperatures and meteorological observations. The regressions between thirty three Sentinel-2-derived VIs, and ChlF measured on the ground were evaluated in order to estimate the best predictors of ChlF. The r-Pearson correlation and polynomial linear regression were used. For maize, the highest correlation between ChlF and VIs were found for NDII (r=0.65) and for SIPI (r=-0.68). The weakest relationship between VIs and ChlF were found for sugar beets. Despite this, it should be noted that the highest correlation for sugar beets appeared for EVI (r=0.45) and S2REP (r=0.43). The results of this study indicate the need for a synergy of low and high resolution satellite data that will enable a more detailed analysis for estimating fluorescence and its relation to climatic conditions, environmental aspects, and VIs derived from satellite images.


Sign in / Sign up

Export Citation Format

Share Document