scholarly journals The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells

Small GTPases ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 135-144 ◽  
Author(s):  
N Porther ◽  
MA Barbieri
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oleg Shuvalov ◽  
Alyona Kizenko ◽  
Alexey Petukhov ◽  
Olga Fedorova ◽  
Alexandra Daks ◽  
...  

AbstractCancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male’s reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii24-iii24
Author(s):  
Q Chang ◽  
L Zhu ◽  
N Li

Abstract BACKGROUND Medulloblastoma (MB) is the most common malignant paediatric brain tumor. Recent studies show that M2 cells were relative more abundant in Shh subtype of MBs compared with other three subtypes. It’s known that M2 cells have close relationship with many tumors’ progression. But if they play any role in the progression of Shh subtype of MB is not yet clear. Many studies demonstrate that exosomes carring miRNAs have close relationship with tumor invasion. The aim of present study is to clarify the role of exosome miRNA between tumor cells and microglias during the progression of Shh subtype of medulloblastoma. MATERIAL AND METHODS Immunofluerescence staining using iNOS and Arg1, which is M1 and M2 specific marker, respectively, was performed in four subtypes of MBs. After coculture of exosomes extracted from Shh subtype of MB cell (DAOY) with microglia cell (BV2), Q-PCR and ELISA assay were done to evaluate the polarization status of the microglia. Transwell and scratch assay were then performed to detect the migration ability of DAOY cell after treatment of exosomes from polirized M2 cells. MiRNA sequencing by Ion Proton technology was then done to analyze the miRNAs expression level between Shh subtype and other subtype of MBs. Transformation assay was used to overexpress and inhibit the expression of these miRNAs respectively to further clarify the role of exosome miRNA in the polarization of BV2 cells. RESULTS M2 cells were observed more abundant than other three subtypes of tumors, supporting that M2 cells play some role in this subtype of MBs. Exosomes of DAOY cells can induce the polarization of M2 cells. The polarized M2 cells can improved the migration and invasion ability of DAOY cell. Dozens of miRNAs were identified with different expression level between Shh subtype of MBs and other subtype of MB cells. Among them, 4 miRNAs were reported to be related with polariztion of M2 in many other lesions. Three of the 4 miRNAs can induce the polarization of M2 in present study. CONCLUSION Our study demonstrated exosome miRNA play a critical role between tumor cells and microglias during the progression of Shh subtype of medulloblastoma.


2021 ◽  
Author(s):  
Jin Zou ◽  
Wei Shen ◽  
Yu Zhang ◽  
Shibo Ying

Mammals can produce nine kinds of arginine methylation enzymes that can be divided into three types (I, II, and III) according to their catalytic activity. Arginine methyltransferase 1 (PRMT1), as the first discovered arginine methyltransferase type I, has been reported to be involved in cell signal transduction, DNA damage repair, RNA transcription and other processes. Its imbalance or abnormal expression is also involved in cancer metastasis. PRMT1 is highly expressed in gastrointestinal tumors and promotes tumor biomarkers expression, chemotherapy resistance and tumorigenicity to promote cancer progression, while downregulation of PRMT1 expression can inhibit the migration and invasion of related tumor cells or promote tumor cells apoptosis and inhibit the progression of cancer. Therefore, PRMT1 may be a cancer therapeutic target. In this paper, arginine methylase 1 expression in various types of gastrointestinal tumors, the tumorigenic mechanism and the role of PRMT1 in tumorigenesis and development were reviewed.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3327
Author(s):  
Zhixiang Wang

The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.


2009 ◽  
Vol 234 (9) ◽  
pp. 1102-1108 ◽  
Author(s):  
Guillaume Kellermann ◽  
Lyes Boudechiche ◽  
Anne Weber ◽  
Michelle Hadchouel

Cell transplantation has become a major focus in biomedical research. However, efficient engraftment in solid tissues remains a challenge. Hepatocyte growth factor (HGF) signaling increases survival, proliferation, migration, and invasion of many cell types through Met, its cell surface receptor. Therefore, activation of this signaling pathway may improve the ability of many cells to be transplanted. We constructed a constitutively activated form of Met (Tpr-Met) fused to the protein transduction domain of HIV-TAT to activate the HGF/Met pathway for a few hours following cell injection. Matrix-assisted refolding was used to renature TAT-Tpr-Met protein, which was efficiently delivered into cells and recapitulated several biological functions of Met in vitro. Furthermore, treatment of hepatic progenitors with this molecule for one hour before transplantation significantly improved engraftment efficiency (31% untreated cells, 58% treated cells). These findings suggest that the transient transfer of Tpr-Met may provide a new approach to increase the proportion of successfully engrafted cells.


Sign in / Sign up

Export Citation Format

Share Document