scholarly journals Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization

2020 ◽  
Vol 9 (1) ◽  
pp. 1774281
Author(s):  
Yuexi He ◽  
Juan Du ◽  
Zhongjun Dong
2021 ◽  
Vol 22 (13) ◽  
pp. 7010
Author(s):  
Shicheng Wang ◽  
Man Cheng ◽  
Peng Peng ◽  
Yue Lou ◽  
Aili Zhang ◽  
...  

Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.


Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1537-1542 ◽  
Author(s):  
Lucas Ferrari de Andrade ◽  
Rong En Tay ◽  
Deng Pan ◽  
Adrienne M. Luoma ◽  
Yoshinaga Ito ◽  
...  

MICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells. These antibodies inhibited tumor growth in multiple fully immunocompetent mouse models and reduced human melanoma metastases in a humanized mouse model. Antitumor immunity was mediated mainly by natural killer (NK) cells through activation of NKG2D and CD16 Fc receptors. This approach prevents the loss of important immunostimulatory ligands by human cancers and reactivates antitumor immunity.


2017 ◽  
Vol 10 (500) ◽  
pp. eaam5353 ◽  
Author(s):  
Matthew Gumbleton ◽  
Raki Sudan ◽  
Sandra Fernandes ◽  
Robert W. Engelman ◽  
Christopher M. Russo ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3675-3675
Author(s):  
Rui Huang ◽  
Yoshihiro Hayashi ◽  
Xiaomei Yan ◽  
Michael Jordan ◽  
Gang Huang

Abstract Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome characterized by an overwhelming activation of diverse immune cells. Chemotherapy based regimen as a first-line therapy for HLH has a substantial risk of mortality. Thus, exploring a less toxic therapy is urgently needed. Accumulating evidence suggests that hypoxia-inducible factors (HIFs) play an important role in the regulation of the immune system. Hypoxia, as well as inflammation, infectious microorganisms, and cancer, triggers HIF expression and stabilization in immune cells. HIFs activation enhances phagocyte capacity, drives T cell differentiation and increases cytotoxic activity. HIFs also regulate the cellular metabolism of immune cells to dictate their fate, development, and function. However, little is known about HIFs' function in HLH pathogenesis. To determine whether activation of HIF-1α/HIF-1b in hematopoietic cells is sufficient to induce HLH phenotypes, we generated transgenic mice with doxycycline-inducible HIF-1α/HIF-1b expression. Using a Vav1-Cre/Rosa26-LSL-rtTA driver, a doxycycline-inducible expression of both a stable and constitutively active human HIF-1α triple-point-mutation (TPM) and wild-type HIF-1β was achieved. All the inducible HIF-1α/HIF-1b mice developed HLH phenotypes in C57/BL6background and died within three weeks. They quickly developed severe anemia, thrombocytopenia, multi-organ failure, splenomegaly, and hemophagocytosis. Total and type-1 polarized macrophages were significantly increased in the bone marrow (BM) and spleen (SP) of HLH mice compared to the controls. To determine the phagocytic activity of the type-1 polarized macrophages, we generated type-1 and type-2 polarized macrophages from BM mononuclear cells in vitro with M-CSF/IFNγ or M-CSF/IL-4 respectively. We found that type 1 rather than type 2 macrophages engulfed erythroblasts in an in vitro co-culture assay. IFN-γ signaling is critical for Type-1 macrophage polarization. We generated IFN-γ receptor-/- /Vav1-Cre/LSL/TPM mice and found that knockout of IFN-γ receptor completely blocked the macrophage activation and HLH development. Interestingly, the serum IFN-γ level was only slightly upregulated in Vav1-Cre/LSL/TPM mice, suggesting that IFN-γ locally, but not systemically, exerts its function in our HLH model. However IFN-γ expression in NK cells and CD8+ T cells did not increase. Thus, the source of the IFN-γ for macrophage polarization is still unclear. In primary HLH, defective cytotoxic function in NK and T cells is important for HLH development. We found that the cell surface CD107a (degranulation) and NK46p (activating receptor) expression didn't change in these HLH mice. Interestingly, the absolute numbers of total NK cells and DX5+ mature cytotoxic NK cells were significantly reduced in the PB, SP, and BM from HLH mice. However, the frequencies of CD8+ T cells, CD4+ T cells, Th17 cells, and total T cells did not change in HLH mice. In order to dissect the contribution of individual immune cell subpopulations to the HLH pathogenesis, diverse lineage specific Cre transgenic alleles were used. Induction of TPM allele in myeloid cells (LysM-Cre), mature T cells (dLck-Cre), NK cells (NCR-Cre), or multi-lineages (LysM-Cre/dLck-Cre) did not cause HLH. Interestingly, induction of TPM allele in the mononuclear phagocyte system (monocyte, macrophage, and dendritic cells) with Cx3cr1-Cre could give rise to HLH phenotypes, as well as macrophage activation and reduced NK cell numbers, which are similar to the Vav1-Cre model. These results indicate that activation of HIF-1α/HIF-1b in the mononuclear phagocyte system is sufficient to polarize macrophages and induce HLH phenotype. The reduced NK cell numbers may be secondary to macrophage/dendritic cell activation in this HLH model. In conclusion, we found that; 1) induction of stable and constitutively active form of HIF-1α/HIF-1β expression in hematopoietic cells, especially in the mononuclear phagocyte system, polarizes macrophages and causes HLH, 2) IFN-γ signaling is required for HLH development and macrophages/dendritic cells are critical immune cell populations in this model, 3) Reduced NK cell numbers may be a secondary phenomenon in this model. This new HLH model recapitulates the features of secondary HLH in human, provides a unique model for dissecting the detail mechanisms, and helps in testing new therapies for sHLH. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 121 (9) ◽  
pp. 3609-3622 ◽  
Author(s):  
Emilie Mamessier ◽  
Aude Sylvain ◽  
Marie-Laure Thibult ◽  
Gilles Houvenaeghel ◽  
Jocelyne Jacquemier ◽  
...  

2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Mickael Vourc’h ◽  
Gaelle David ◽  
Benjamin Gaborit ◽  
Alexis Broquet ◽  
Cedric Jacqueline ◽  
...  

ABSTRACT Natural killer (NK) cells play a key role in both antibacterial and antitumor immunity. Pseudomonas aeruginosa infection has already been reported to alter NK cell functions. We studied in vitro the effect of P. aeruginosa on NK cell cytotoxic response (CD107a membrane expression) to a lymphoma cell line. Through positive and negative cell sorting and adoptive transfer, we determined the influence of monocytes, lymphocytes, and regulatory T cells (Treg) on NK cell function during P. aeruginosa infection. We also studied the role of the activating receptor natural killer group 2D (NKG2D) in NK cell response to B221. We determined that P. aeruginosa significantly altered both cytotoxic response to B221 and NKG2D expression on NK cells in a Treg-dependent manner and that the NKG2D receptor was involved in NK cell cytotoxic response to B221. Our results also suggested that during P. aeruginosa infection, monocytes participated in Treg-mediated NK cell alteration. In conclusion, P. aeruginosa infection impairs NK cell cytotoxicity and alters antitumor immunity. These results highlight the strong interaction between bacterial infection and immunity against cancer.


2018 ◽  
Vol 128 (11) ◽  
pp. 5123-5136 ◽  
Author(s):  
Youwei Wang ◽  
Jianhong Chu ◽  
Ping Yi ◽  
Wejuan Dong ◽  
Jennifer Saultz ◽  
...  

2021 ◽  
Vol 534 ◽  
pp. 134-140
Author(s):  
Dong Han ◽  
Yinfeng Xu ◽  
Xinping Zhao ◽  
Yunyun Mao ◽  
Qinglin Kang ◽  
...  

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Ruiqi Jia ◽  
Kuili Cui ◽  
Zhenkui Li ◽  
Yuan Gao ◽  
Bianfang Zhang ◽  
...  

Abstract Background Pseudomonas aeruginosa (PA) is one of the most common bacteria that causes lung infection in hospital. The aim of our study is to explore the role and action mechanism of NK cells in lung PA infection. Methods In this present study, 2.5 × 108 CFU/mouse PA was injected into murine trachea to make lung PA infection mouse model. Anti-asialo GM1 was used to inhibit NK cell. The percentage of NK cells was ensured by flow cytometry, and the M1- and M2-polarized macrophages were determined by flow cytometry, qRT-PCR, and ELISA assay. Besides, H&E staining was performed to ensure the pathological changes in lung tissues. Transmission electron microscopy and western blot were carried out to identify the exosome. Results Here, in the mouse model of PA lung infection, NK cell depletion caused M2 polarization of lung macrophage, and exacerbated PA-induced lung injury. Next, our data shown that M2 macrophage polarization was enhanced when the generation of NK cell-derived exosome was blocked in the co-culture system of NK cells and macrophages. Subsequently, we demonstrated that NK cells promoted M1 macrophage polarization both in PA-infected macrophage and the mouse model of PA lung infection, and attenuated lung injury through exosome. Conclusion Overall, our data proved that NK cell may improve PA-induced lung injury through promoting M1 lung macrophage polarization by secreting exosome. Our results provide a new idea for the treatment of PA lung infection.


Sign in / Sign up

Export Citation Format

Share Document