scholarly journals SMAD4 promotes TGF-β–independent NK cell homeostasis and maturation and antitumor immunity

2018 ◽  
Vol 128 (11) ◽  
pp. 5123-5136 ◽  
Author(s):  
Youwei Wang ◽  
Jianhong Chu ◽  
Ping Yi ◽  
Wejuan Dong ◽  
Jennifer Saultz ◽  
...  
2019 ◽  
Vol 216 (9) ◽  
pp. 2010-2023 ◽  
Author(s):  
Jessica Vetters ◽  
Mary J. van Helden ◽  
Sigrid Wahlen ◽  
Simon J. Tavernier ◽  
Arne Martens ◽  
...  

The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20−/− cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20−/− cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis.


2007 ◽  
Vol 178 (12) ◽  
pp. 7540-7549 ◽  
Author(s):  
Jeremy B. Swann ◽  
Yoshihiro Hayakawa ◽  
Nadeen Zerafa ◽  
Kathleen C. F. Sheehan ◽  
Bernadette Scott ◽  
...  
Keyword(s):  
Nk Cell ◽  
Type I ◽  

Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1537-1542 ◽  
Author(s):  
Lucas Ferrari de Andrade ◽  
Rong En Tay ◽  
Deng Pan ◽  
Adrienne M. Luoma ◽  
Yoshinaga Ito ◽  
...  

MICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells. These antibodies inhibited tumor growth in multiple fully immunocompetent mouse models and reduced human melanoma metastases in a humanized mouse model. Antitumor immunity was mediated mainly by natural killer (NK) cells through activation of NKG2D and CD16 Fc receptors. This approach prevents the loss of important immunostimulatory ligands by human cancers and reactivates antitumor immunity.


2017 ◽  
Vol 10 (500) ◽  
pp. eaam5353 ◽  
Author(s):  
Matthew Gumbleton ◽  
Raki Sudan ◽  
Sandra Fernandes ◽  
Robert W. Engelman ◽  
Christopher M. Russo ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4887-4893 ◽  
Author(s):  
Thomas Ranson ◽  
Christian A. J. Vosshenrich ◽  
Erwan Corcuff ◽  
Odile Richard ◽  
Werner Müller ◽  
...  

Abstract Several distinct classes of surface receptors can, on ligand binding, transmit signals that modulate the survival, proliferation, and apoptosis of peripheral B, T, and natural killer (NK) cells. At the population level, dynamic changes in lymphocyte cell numbers are strictly regulated to maintain a steady state, a process referred to as homeostasis. Although several studies have investigated the signals that regulate B- and T-cell homeostasis, little is known about the mechanisms that control the survival and proliferation of peripheral NK cells. Using an adoptive transfer system, we have investigated the role of γc-dependent cytokines, in particular interleukin 7 (IL-7) and IL-15, and major histocompatibility complex (MHC) class I molecules in peripheral NK-cell homeostasis. We observed that IL-15 plays a dominant role in the survival of peripheral NK cells, via maintenance of the antiapoptotic factor Bcl-2. IL-15 availability, however, also plays an important role because endogenous NK cells in the recipient mice influence the behavior of adoptively transferred NK cells. Finally, although NK cells bear functional inhibitory Ly49 receptors for MHC class I molecules, the presence or absence of specific ligands on host cells did not influence the survival or homeostatic expansion of donor NK cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2536-2536
Author(s):  
Xuxiang Liu ◽  
Yunfei Shi ◽  
Yuping Li ◽  
Ru Chen ◽  
Sheng Pan ◽  
...  

Natural killer (NK) cells are innate lymphocytes responsible for early defense against infections and malignant cells. Specific transcription factors crucial for NK cell development and function include PRDM1, which also regulates T cell homeostasis and is essential for the terminal differentiation of B cells into plasma cells. Importantly, PRDM1 deletion, methylation and loss-of-function mutations were commonly detected in NK cell malignancies. However, the detailed mechanisms through which PRDM1 regulates NK cell homeostasis are still largely undefined. Here, we employed an in vitro culture system of human NK cells isolated from healthy donors, in which the NK cells were cultured in the presence of IL-2 with or without an engineered feeder cell line, K562-Cl9-mb21, expressing membrane-bound IL-21, 4-1BBL and CD86. The NK cells were able to expand for months when co-cultured with feeder cells, whereas IL-2 alone could only maintain NK cell survival with limited proliferation for one week. We performed ChIP-seq to compare the genome-wide binding profiles of PRDM1 in NK cells grown with or without feeder cells. We found that PRDM1 bound much fewer target genes (802) in NK cells with feeder than in NK cells with IL-2 alone (2880), and 98.5% (790/802) of the binding sites in feeder-stimulated NK cells overlapped with those found in NK cells without feeder. The PRDM1 consensus motifs were almost identical in both conditions. MEME analyses also identified motifs of other transcription factors enriched in the PRDM1 binding sites, such as the RUNX and T-Box families. Interestingly, the RUNX and T-Box motifs, among others, were more enriched in the PRDM1 binding sites lacking the PRDM1 motif than in those with the PRDM1 motif, which indicates that PRDM1 may often bind to DNA indirectly through other transcription factors. PRDM1 bound a large number of genes in the NK or T cell receptor signaling pathway, which are employed during NK cell activation. In addition, several genes encoding immune checkpoints that may restrict NK cell activation such as TIGIT, HAVCR2 (TIM3), and IL-1R8 were targeted by PRDM1. Many genes encoding NK cell inhibitory and activating receptors were also bound by PRDM1. Moreover, PRDM1 was found to target transcription factors that are important for NK cell development and homeostasis, such as the RUNX family, TBX21, MAF, and PRDM1 itself. Despite an extensive overlap of PRDM1 binding sites detected in NK cells grown with or without feeder cells, the most enriched pathways were not exactly the same. Importantly, our RNA-seq data on PRDM1-knockout NK cells validated the regulatory role of PRDM1 on a fraction of these PRDM1-bound genes and interestingly, PRDM1 appeared to be an activator for some of the genes, including those encoding immune checkpoint molecules TIGIT, HAVCR2, and IL-1R8. We also utilized ATAC-seq to examine the chromatin accessibility of NK cells grown with feeder cells or with IL-2 alone. We identified differentially enriched pathways for the NK cells cultured under different conditions. When compared with the PRDM1 ChIP-seq, we found that those PRDM1 binding sites that contain a consensus PRDM1 motif were less likely to be accessible to transposase than those without the PRDM1 motif, thereby confirming the transcriptional repressor role of PRDM1. To further understand how PRDM1 regulates its target genes in NK cells, we performed mass spectrometric analysis on the protein complexes associated with PRDM1. We were able to identify the interaction of PRDM1 with the corepressor Groucho (TLE3) and components from the SIN3, NCoR, and NuRD complex, which have been previously reported in mouse plasma cells. Surprisingly, the protein compositions of the PRDM1-associated complexes from the two NK cell populations were very different. Although PRDM1 is generally associated with transcriptional repression, we also detected the association of PRDM1 with transcriptional activators or coactivators, such as the RUNX-binding protein CBFβ and the T-Box family member EOMES, which may thereby upregulate some of the PRDM1 target genes. In summary, we found that PRDM1 binds and regulates an extensive network of genes responsible for NK cell activation and function. Extrinsic stimuli, as provided by the feeder cells, can alter the extent and profile of PRDM1 binding as well as the associated protein complexes and hence alter its regulatory function in NK cells. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 121 (9) ◽  
pp. 3609-3622 ◽  
Author(s):  
Emilie Mamessier ◽  
Aude Sylvain ◽  
Marie-Laure Thibult ◽  
Gilles Houvenaeghel ◽  
Jocelyne Jacquemier ◽  
...  

2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Mickael Vourc’h ◽  
Gaelle David ◽  
Benjamin Gaborit ◽  
Alexis Broquet ◽  
Cedric Jacqueline ◽  
...  

ABSTRACT Natural killer (NK) cells play a key role in both antibacterial and antitumor immunity. Pseudomonas aeruginosa infection has already been reported to alter NK cell functions. We studied in vitro the effect of P. aeruginosa on NK cell cytotoxic response (CD107a membrane expression) to a lymphoma cell line. Through positive and negative cell sorting and adoptive transfer, we determined the influence of monocytes, lymphocytes, and regulatory T cells (Treg) on NK cell function during P. aeruginosa infection. We also studied the role of the activating receptor natural killer group 2D (NKG2D) in NK cell response to B221. We determined that P. aeruginosa significantly altered both cytotoxic response to B221 and NKG2D expression on NK cells in a Treg-dependent manner and that the NKG2D receptor was involved in NK cell cytotoxic response to B221. Our results also suggested that during P. aeruginosa infection, monocytes participated in Treg-mediated NK cell alteration. In conclusion, P. aeruginosa infection impairs NK cell cytotoxicity and alters antitumor immunity. These results highlight the strong interaction between bacterial infection and immunity against cancer.


Sign in / Sign up

Export Citation Format

Share Document