Value of micro-CT as an investigative tool for osteochondritis dissecans: A preliminary study with comparison to histology

2003 ◽  
Vol 44 (5) ◽  
pp. 532-537
Author(s):  
A. Mohr ◽  
C. Heiss ◽  
I. Bergmann ◽  
C. Schrader ◽  
F. W. Roemer ◽  
...  

Purpose: To evaluate micro computed tomography (micro-CT) for the assessment of osteochondritis dissecans in comparison with histology. Material and Methods: Osteochondritis dissecans lesions of 3 patients were evaluated using micro-CT (0.125 mA, 40 keV, 60 μm slice thickness, 60 μm isotropic resolution, entire sample) and light microscopy (toluidine blue, 3–5 μm slice thickness). The methods were compared regarding preparation time, detectability of tissue types and morphologic features of bone and cartilage. Results: Non-destructive micro-CT imaging of the entire sample was faster than histologic preparation of a single slice for light microscopy. Morphologic features of bone and cartilage could be imaged in a comparable way to histology. It was not possible to image cells or different tissue types of bone and cartilage with micro-CT. Conclusion: Micro-CT is a fast, non-destructive tool that may be a supplement or, if detailed histologic information is not necessary, an alternative to light microscopy for the investigation of osteochondritis dissecans.

Author(s):  
Gozde Serindere ◽  
Ceren Aktuna Belgin ◽  
Kaan Orhan

Background: There are a few studies about the evaluation of maxillary first premolars internal structure with micro-computed tomography (micro-CT). The aim of this study was to assess morphological features of the pulp chamber in maxillary first premolar teeth using micro- CT. Methods: Extracted 15 maxillary first premolar teeth were selected from the patients who were in different age groups. The distance between the pulp orifices, the diameter of the pulp and the width of the pulp chamber floor were measured on the micro-CT images with the slice thickness of 13.6 µm. The number of root canal orifices and the presence of isthmus were evaluated. Results: The mean diameter of orifices was 0.73 mm on the buccal side while it was 0.61 mm on palatinal side. The mean distance between pulp orifices was 2.84 mm. The mean angle between pulp orifices was -21.53°. The mean height of pulp orifices on the buccal side was 4.32 mm while the mean height of pulp orifices on the palatinal side was 3.56 mm. The most observed shape of root canal orifices was flattened ribbon. No isthmus was found in specimens. Conclusion: Minor anatomical structures can be evaluated in more detail with micro-CT. The observation of the pulp cavity was analyzed using micro-CT.


2003 ◽  
Vol 44 (5) ◽  
pp. 532-537 ◽  
Author(s):  
A. Mohr ◽  
C. Heiss ◽  
I. Bergmann ◽  
C. Schrader ◽  
F. W. Roemer ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 769
Author(s):  
Francesco Simone Mensa ◽  
Maurizio Muzzi ◽  
Federica Spani ◽  
Giuliana Tromba ◽  
Christian Dullin ◽  
...  

Many techniques are used today to study insect morphology, including light and electron microscopy. Most of them require to specifically prepare the sample, precluding its use for further investigation. In contrast, micro-CT allows a sample to be studied in a non-destructive and rapid process, even without specific treatments that might hinder the use of rare and hard-to-find species in nature. We used synchrotron radiation (SR) micro-CT and conventional micro-CT to prepare 3D reconstructions of Diptera, Coleoptera, and Hymenoptera species that had been processed with 4 common preparation procedures: critical-point drying, sputter-coating, resin embedding, and air-drying. Our results showed that it is possible to further utilize insect samples prepared with the aforementioned preparation techniques for the creation of 3D models. Specimens dried at the critical point showed the best results, allowing us to faithfully reconstruct both their external surface and their internal structures, while sputter-coated insects were the most troublesome for the 3D reconstruction procedure. Air-dried specimens were suitable for external morphological analyses, while anatomical investigation of soft internal organs was not possible due to their shrinking and collapsing. The sample included in resin allowed us to reconstruct and appreciate the external cuticle and the internal parts. In this work, we demonstrate that insect samples destined to different analyses can be used for new micro-CT studies, further deepening the possibility of state-of-the-art morphological analyses.


2021 ◽  
Vol 7 (9) ◽  
pp. 172
Author(s):  
Kleoniki Keklikoglou ◽  
Christos Arvanitidis ◽  
Georgios Chatzigeorgiou ◽  
Eva Chatzinikolaou ◽  
Efstratios Karagiannidis ◽  
...  

Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.


2016 ◽  
Vol 722 ◽  
pp. 235-240 ◽  
Author(s):  
Martin Lidmila ◽  
Tomáš Zikmund ◽  
Jindřich Dvořák ◽  
Jozef Kaiser ◽  
Vít Lojda

The extent of the use of asphalt concrete in track bed layers is minimal in contrast to the application of granular materials mostly represented by coarse/fine crushed stone mixture. This article summarizes advantages and disadvantages of the use of asphalt concrete in the track bed construction and provides relevant literature research. The main part of this article focuses on the application of recycled asphalt concrete (so called R-material) in the track bed layer and its following non-destructive X-ray Micro Computed Tomography Method (Micro-CT) for the description of its structural parameters. The contribution of this research is based on the evaluation of the air void and soluble binder content of chosen recycled asphalt concrete. First, it was obtained from laboratory geotechnical models of a railway track, and then from the following implementation in a trial section of an operating railway track. The conclusion contains results of the R-material practical application and findings from Micro-CT.


2012 ◽  
Vol 229-231 ◽  
pp. 1445-1448
Author(s):  
Wei Yun Huang ◽  
Chang Da Chen ◽  
Yen Nien Chen ◽  
Wei Jen Shih ◽  
Chih Han Chang

Metal injection molding (MIM) is a combination of metal powder and injection molding technology. The main advantage of this technology for material parts with small and complex shape is to manufacture cost-effective and high-volume products. The main processing steps include mixing, injection molding, debinding , sintering, and hot isostatic pressing (HIP) in order to reduce internal porosity of metals, then to improve mechanical properties. This study is based on non-destructive testing method to determine the possible defect inside the internal structure of the MIM parts. Three types of parts with and without HIP were evaluated investigated in this study. The micro computed tomography (Micro-CT) is used to scan these parts. Based the reconstructed section images from CT, the defects can be identified. It showed that with HIP the much of detects could be reduced. To conclude, Micro CT could be used to detect, in a non-destructive way, the internal detect within MIM parts can be found out in the micro-CT images, so that the manufacturing process could be modified to improve the quality of MIM parts.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00022 ◽  
Author(s):  
Cristian T. Badea ◽  
Laurence W. Hedlund ◽  
Julie F. Boslego Mackel ◽  
Lan Mao ◽  
Howard A. Rockman ◽  
...  

The purpose of this study was to investigate the use of micro–computed tomography (micro-CT) for morphological and functional phenotyping of muscle LIM protein (MLP) null mice and to compare micro-CT with M-mode echocardiography. MLP null mice and controls were imaged using both micro-CT and M-mode echocardiography. For micro-CT, we used a custom-built scanner. Following a single intravenous injection of a blood pool contrast agent (Fenestra VC, ART Advanced Research Technologies, Saint-Laurent, QC) and using a cardiorespiratory gating, we acquired eight phases of the cardiac cycle (every 15 ms) and reconstructed three-dimensional data sets with 94-micron isotropic resolution. Wall thickness and volumetric measurements of the left ventricle were performed, and cardiac function was estimated. Micro-CT and M-mode echocardiography showed both morphological and functional aspects that separate MLP null mice from controls. End-diastolic and -systolic volumes were increased significantly three- and fivefold, respectively, in the MLP null mice versus controls. Ejection fraction was reduced by an average of 32% in MLP null mice. The data analysis shows that two imaging modalities provided different results partly owing to the difference in anesthesia regimens. Other sources of errors for micro-CT are also analyzed. Micro-CT can provide the four-dimensional data (three-dimensional isotropic volumes over time) required for morphological and functional phenotyping in mice.


Author(s):  
Kleoniki Keklikoglou ◽  
Sarah Faulwetter ◽  
Eva Chatzinikolaou ◽  
Patricia Wils ◽  
Jonathan Brecko ◽  
...  

Micro-computed tomography (micro-CT or microtomography) is a non-destructive imaging technique using X-rays which allows the digitisation of an object in three dimensions. The ability of micro-CT imaging to visualise both internal and external features of an object, without destroying the specimen, makes the technique ideal for the digitisation of valuable natural history collections. This handbook serves as a comprehensive guide to laboratory micro-CT imaging of different types of natural history specimens, including zoological, botanical, palaeontological and geological samples. The basic principles of the micro-CT technology are presented, as well as protocols, tips and tricks and use cases for each type of natural history specimen. Finally, data management protocols and a comprehensive list of institutions with micro-CT facilities, micro-CT manufacturers and relative software are included.


2013 ◽  
Vol 8 ◽  
Author(s):  
Carolina Loch ◽  
Donald R Schwass ◽  
Jules A Kieser ◽  
R Ewan Fordyce

Teeth are important elements in studies of modern and fossil Cetacea (whales, dolphins), providing information on feeding habits, estimations of age and phylogenetic relationships. The growth layer groups (GLGs) recorded in dentine have demonstrated application for aging studies, but also have the potential to elucidate life history phenomena such as metabolic or physiologic events. Micro-Computed Tomography (Micro-CT) is a non-invasive and non-destructive technique that allows 3-dimensional study of mineralized tissues, such as human teeth, and their physical properties. Teeth from extant dolphins (Cetacea: Odontoceti) and some fossil odontocetes were scanned in a Skyscan 1172 Micro-CT desktop system. X-rays were generated at 100 kV and 100 µA for extant samples, and at 80kV and 124 µA for fossils. 0.5 mm thick aluminum and copper filters were used in the beam. Reconstructed images were informative for most extant species, showing a good resolution of the enamel layer, dentine and pulp cavity. Greyscale changes in the dentinal layers were not resolved enough to show GLGs. Visualization of the internal structure in fossil cetacean teeth depended on the degree of diagenetic alteration in the specimen; undifferentiated enamel and dentine regions probably reflect secondary mineralization. However, internal details were finely resolved for one fossil specimen, showing the enamel, internal layers of dentine and the pulp cavity. Micro-CT has been proven to be a useful tool for resolving the internal morphology of fossil and extant teeth of cetaceans before they are sectioned for other morphological analyses; however some methodological refinements are still necessary to allow better resolution of dentine for potential application in non-destructive age determination studies. 


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cristina Marilin Calo ◽  
Marcia A. Rizzutto ◽  
Sandra M. Carmello-Guerreiro ◽  
Carlos S. B. Dias ◽  
Jennifer Watling ◽  
...  

Abstract In this work, several attributes of the internal morphology of drupaceous fruits found in the archaeological site Monte Castelo (Rondonia, Brazil) are analyzed by means of two different imaging methods. The aim is to explore similarities and differences in the visualization and analytical properties of the images obtained via High Resolution Light Microscopy and X-ray micro-computed tomography (X-ray MicroCT) methods. Both provide data about the three-layered pericarp (exo-, meso- and endocarp) of the studied exemplars, defined by cell differentiation, vascularisation, cellular contents, presence of sclerenchyma cells and secretory cavities. However, it is possible to identify a series of differences between the information that can be obtained through each of the methods. These variations are related to the definition of contours and fine details of some characteristics, their spatial distribution, size attributes, optical properties and material preservation. The results obtained from both imaging methods are complementary, contributing to a more exhaustive morphological study of the plant remains. X-ray MicroCT in phase-contrast mode represents a suitable non-destructive analytic technique when sample preservation is required.


Sign in / Sign up

Export Citation Format

Share Document