scholarly journals FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons

2003 ◽  
Vol 162 (4) ◽  
pp. 613-622 ◽  
Author(s):  
Jonathan Gilley ◽  
Paul J. Coffer ◽  
Jonathan Ham

Developing sympathetic neurons die by apoptosis when deprived of NGF. BIM, a BH3-only member of the BCL-2 family, is induced after NGF withdrawal in these cells and contributes to NGF withdrawal–induced death. Here, we have investigated the involvement of the Forkhead box, class O (FOXO) subfamily of Forkhead transcription factors in the regulation of BIM expression by NGF. We find that overexpression of FOXO transcription factors induces BIM expression and promotes death of sympathetic neurons in a BIM-dependent manner. In addition, we find that FKHRL1 (FOXO3a) directly activates the bim promoter via two conserved FOXO binding sites and that mutation of these sites abolishes bim promoter activation after NGF withdrawal. Finally, we show that FOXO activity contributes to the NGF deprivation–induced death of sympathetic neurons.

2011 ◽  
Vol 16 (4) ◽  
pp. 394-404 ◽  
Author(s):  
David C. Bouck ◽  
Peter Shu ◽  
Jimmy Cui ◽  
Anang Shelat ◽  
Taosheng Chen

Class O forkhead box (FOXO) transcription factors are downstream targets of the PI3K/AKT signaling pathway, which is upregulated in many tumors. AKT phosphorylates and inactivates FOXO1 by relocating it to the cytoplasm. Because FOXO1 functions as a tumor suppressor by negatively regulating cell cycle progression and cell survival, compounds that promote FOXO1 localization to the nucleus might have therapeutic value in oncology. Here the authors describe the identification of such compounds by using an image-based, high-content screen. Compounds that were active in retaining FOXO1 in the nucleus were tested to determine their pathway specificity and isoform specificity by using high-content assays for Rev and FOXO3, respectively.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3446
Author(s):  
Stefan Koch

Aberrant activation of the oncogenic Wnt signaling pathway is a hallmark of numerous types of cancer. However, in many cases, it is unclear how a chronically high Wnt signaling tone is maintained in the absence of activating pathway mutations. Forkhead box (FOX) family transcription factors are key regulators of embryonic development and tissue homeostasis, and there is mounting evidence that they act in part by fine-tuning the Wnt signaling output in a tissue-specific and context-dependent manner. Here, I review the diverse ways in which FOX transcription factors interact with the Wnt pathway, and how the ectopic reactivation of FOX proteins may affect Wnt signaling activity in various types of cancer. Many FOX transcription factors are partially functionally redundant and exhibit a highly restricted expression pattern, especially in adults. Thus, precision targeting of individual FOX proteins may lead to safe treatment options for Wnt-dependent cancers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ghulam Murtaza ◽  
Abida Kalsoom Khan ◽  
Rehana Rashid ◽  
Saiqa Muneer ◽  
Syed Muhammad Farid Hasan ◽  
...  

Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.


Cell ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 1053-1064 ◽  
Author(s):  
Sarah De Val ◽  
Neil C. Chi ◽  
Stryder M. Meadows ◽  
Simon Minovitsky ◽  
Joshua P. Anderson ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 719-719 ◽  
Author(s):  
Jacqueline E. Payton ◽  
Nicole R. Grieselhuber ◽  
Li-Wei Chang ◽  
Mark A. Murakami ◽  
Wenlin Yuan ◽  
...  

Abstract In order to better understand the pathogenesis of acute promyelocytic leukemia (APL, FAB M3), we sought to determine its gene expression signature by comparing the expression profiles of 14 APL samples to that of other AML subtypes (M0, M1, M2, M4, n=62) and to fractionated normal whole bone marrow cells (CD34 cells, promyelocytes, PMNs, n=5 each). We used ANOVA and SAM (Significance Analysis of Microarrays) to select genes that were highly expressed in APL cells and that displayed low to no expression in other AML subtypes. The APL signature was then further refined by filtering genes whose expression in APL was not significantly different from that of normal promyelocytes, yielding 1121 annotated genes that reliably distinguish APL from the other FAB subtypes using unsupervised hierarchical clustering, both in training and validation datasets. Fold change differences in expression between M3 and other AML FAB classes were striking, for example: GABRE 35.4, HGF 21.3, ANXA8 21.3, PTPRG 16.9, PTGDS 12.1, PPARG 11.1, STAB1 9.8. A large proportion of the APL versus other FAB dysregulome was recapitulated when we compared APL expression to that of the normal pattern of myeloid development. We identified 733 annotated genes with significantly different expression in APL versus normal myeloid cell fractions. These dysregulated genes were assigned to 4 classes: persistently expressed CD34 cell-specific genes, repressed promyelocyte-specific genes, prematurely expressed neutrophil-specific genes and genes with high expression in APL and low/no expression in normal myeloid cell fractions. Expression differences in several of the most dysregulated genes were validated by qRT-PCR. We then examined the expression of the APL signature genes in myeloid cell lines and tumors from a murine APL model. The bona fide M3 signature was not apparent in resting NB4 cells (which contain t(15;17), and which express PML-RARA), nor in PR-9 cells following Zn induction of PML-RARA expression, suggesting that neither cell line accurately models the gene expression signature of primary APL cells. Most of the nodal genes of the mCG-PML-RARA murine APL dysregulome (Yuan, et al, 2007) are similarly dysregulated in human M3 cells; however, the human and mouse dysregulomes do not completely coincide. Finally, we have begun investigating which APL signature genes are direct transcriptional targets of PML-RARA. The promoters of the APL signature genes were analyzed for the presence of known PML-RARA binding sites using multiple computational methods. The analyses demonstrated that several transcription factors (EBF3, TWIST1, SIX3, PPARG) have putative retinoic acid response elements (RAREs) in their upstream regulatory regions. Additionally, we examined the promoters of some of the most upregulated genes (HGF, PTGDS, STAB1) for known consensus sites of these transcription factors, and found that all have putative binding sites for at least one. These results suggest that PML-RARA may initiate a transcriptional cascade that relies not only on its own activity, but also on the actions of downstream transcription factors. In summary, our studies indicate that primary APL cells have a gene expression signature that is consistent and highly reproducible, but different from commonly used human APL cell lines and a mouse model of APL. The molecular mechanisms that govern this unique signature are currently under investigation.


Sign in / Sign up

Export Citation Format

Share Document