scholarly journals Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis

2004 ◽  
Vol 164 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Mariusz Karbowski ◽  
Damien Arnoult ◽  
Hsiuchen Chen ◽  
David C. Chan ◽  
Carolyn L. Smith ◽  
...  

A dynamic balance of organelle fusion and fission regulates mitochondrial morphology. During apoptosis this balance is altered, leading to an extensive fragmentation of the mitochondria. Here, we describe a novel assay of mitochondrial dynamics based on confocal imaging of cells expressing a mitochondrial matrix–targeted photoactivable green fluorescent protein that enables detection and quantification of organelle fusion in living cells. Using this assay, we visualize and quantitate mitochondrial fusion rates in healthy and apoptotic cells. During apoptosis, mitochondrial fusion is blocked independently of caspase activation. The block in mitochondrial fusion occurs within the same time range as Bax coalescence on the mitochondria and outer mitochondrial membrane permeabilization, and it may be a consequence of Bax/Bak activation during apoptosis.

2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


2018 ◽  
Vol 51 (4) ◽  
pp. 1658-1678 ◽  
Author(s):  
Suparna Sarkar-Banerjee ◽  
Sourav Chowdhury ◽  
Dwipanjan Sanyal ◽  
Tulika Mitra ◽  
Sib Sankar Roy ◽  
...  

Background/Aims: The conformation, folding and lipid binding properties of the intestinal fatty acid binding proteins (IFABP) have been extensively investigated. In contrast, the functional aspects of these proteins are not understood and matter of debates. In this study, we aim to address the deleterious effects of FA overload on cellular components, particularly mitochondria; and how IFABP helps in combating this stress by restoring the mitochondrial dynamics. Methods: In the present study the functional aspect of IFABP under conditions of lipid stress was studied by a string of extensive in-cell studies; flow cytometry by fluorescence-activated cell sorting (FACS), confocal imaging, western blotting and quantitative real time PCR. We deployed ectopic expression of IFABP in rescuing cells under the condition of lipid stress. Again in order to unveil the mechanistic insights of functional traits, we arrayed extensive computational approaches by means of studying centrality calculations along with protein-protein association and ligand induced cluster dissociation. While addressing its functional importance, we used FCS and in-silico computational analyses, to show the structural distribution and the underlying mechanism of IFABP’s action. Results: Ectopic expression of IFABP in HeLa cells has been found to rescue mitochondrial morphological dynamics and restore membrane potential, partially preventing apoptotic damage induced by the increased FAs. These findings have been further validated in the functionally relevant intestinal Caco-2 cells, where the native expression of IFABP protects mitochondrial morphology from abrogation induced by FA overload. However, this native level expression is insufficient to protect against apoptotic cell death, which is rescued, at least partially in cells overexpressing IFABP. In addition, shRNA mediated IFABP knockdown in Caco-2 cells compromises mitochondrial dynamics and switches on intrinsic apoptotic pathways under FA-induced metabolic stress. Conclusion: To summarize, the present study implicates functional significance of IFABP in controlling ligand-induced damage in mitochondrial dynamics and apoptosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jarmon G. Lees ◽  
Anne M. Kong ◽  
Yi C. Chen ◽  
Priyadharshini Sivakumaran ◽  
Damián Hernández ◽  
...  

Human induced pluripotent stem cells (iPSCs) can be differentiated in vitro into bona fide cardiomyocytes for disease modelling and personalized medicine. Mitochondrial morphology and metabolism change dramatically as iPSCs differentiate into mesodermal cardiac lineages. Inhibiting mitochondrial fission has been shown to promote cardiac differentiation of iPSCs. However, the effect of hydrazone M1, a small molecule that promotes mitochondrial fusion, on cardiac mesodermal commitment of human iPSCs is unknown. Here, we demonstrate that treatment with M1 promoted mitochondrial fusion in human iPSCs. Treatment of iPSCs with M1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. The pro-fusion and pro-cardiogenic effects of M1 were not associated with changes in expression of the α and β subunits of adenosine triphosphate (ATP) synthase. Our findings demonstrate for the first time that hydrazone M1 is capable of promoting cardiac differentiation of human iPSCs, highlighting the important role of mitochondrial dynamics in cardiac mesoderm lineage specification and cardiac development. M1 and other mitochondrial fusion promoters emerge as promising molecular targets to generate lineages of the heart from human iPSCs for patient-specific regenerative medicine.


2019 ◽  
Vol 8 (10) ◽  
pp. 1723
Author(s):  
Tamara Mirzapoiazova ◽  
Haiqing Li ◽  
Anusha Nathan ◽  
Saumya Srivstava ◽  
Mohd W. Nasser ◽  
...  

Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer.


1998 ◽  
Vol 9 (10) ◽  
pp. 2917-2931 ◽  
Author(s):  
Teresa Rinaldi ◽  
Carlo Ricci ◽  
Danilo Porro ◽  
Monique Bolotin-Fukuhara ◽  
Laura Frontali

We report here the functional characterization of an essentialSaccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of thempr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.


2002 ◽  
Vol 2002 (125) ◽  
pp. pl4-pl4 ◽  
Author(s):  
S. Shimozono ◽  
T. Fukano ◽  
T. Nagai ◽  
Y. Kirino ◽  
H. Mizuno ◽  
...  

2008 ◽  
Vol 99 (4) ◽  
pp. 2026-2032 ◽  
Author(s):  
Long-Jun Wu ◽  
Min Zhuo

Microglia are well known for their roles in brain injuries and infections. However, there is no function attributes to resting microglia thus far. Here we performed a combination of simultaneous electrophysiology and time-lapse confocal imaging in green fluorescent protein–labeled microglia in acute hippocampal slices. In contrast to CA1 neurons, microglia showed no spontaneous or evoked synaptic currents. Neither glutamate- nor GABA-induced current/chemotaxis of microglia was detected. Strong tetanic stimulation of Schaffer-collateral pathways that induce CA1 long-term potentiation did not affect microglial motilities. Our results suggest that microglia are highly reserved for neuronal protective function but not synaptic plasticity in the brain.


2015 ◽  
Author(s):  
Anton Khmelinskii ◽  
Matthias Meurer ◽  
Chi-Ting Ho ◽  
Birgit Besenbeck ◽  
Julia Fueller ◽  
...  

Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far tFTs were constructed by combining different slower-maturing red fluorescent proteins (redFPs) with the same faster-maturing superfolder green fluorescent protein (sfGFP). Towards a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing greenFPs, while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT towards slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for design of new tFTs.


2021 ◽  
Author(s):  
Dnyanesh Dubal ◽  
Prachiti Moghe ◽  
Bhavin Uttekar ◽  
Richa Rikhy

Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depletion of mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane protein Marf in the Drosophila type II neuroblast lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers and polarity of type II neuroblasts but led to a decrease in proliferation and differentiation of cells in the lineage. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial fusion but did not show defects in proliferation and differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial fusion and suppressed fragmentation, loss of mitochondrial activity, proliferation and differentiation in the type II NB lineage. We found that Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 mutants. An increase in Notch signaling required mitochondrial fusion for NB proliferation. Further, Drp1 mutants in combination with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage suggesting that fused mitochondria can influence Notch signaling driven differentiation in the type II NB lineage. Our results implicate a crosstalk between Notch signalling, mitochondrial activity and mitochondrial fusion as an essential step in type II NB differentiation.


Sign in / Sign up

Export Citation Format

Share Document