scholarly journals Semaphorin 4D/Plexin-B1–mediated R-Ras GAP activity inhibits cell migration by regulating β1 integrin activity

2006 ◽  
Vol 173 (4) ◽  
pp. 601-613 ◽  
Author(s):  
Izumi Oinuma ◽  
Hironori Katoh ◽  
Manabu Negishi

Plexins are cell surface receptors for semaphorins and regulate cell migration in many cell types. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 functions as a GTPase-activating protein (GAP) for R-Ras, a member of Ras family GTPases implicated in regulation of integrin activity and cell migration (Oinuma, I., Y. Ishikawa, H. Katoh, and M. Negishi. 2004. Science. 305:862–865). We characterized the role of R-Ras downstream of Sema4D/Plexin-B1 in cell migration. Activation of Plexin-B1 by Sema4D suppressed the ECM-dependent R-Ras activation, R-Ras–mediated phosphatydylinositol 3-kinase activation, and β1 integrin activation through its R-Ras GAP domain, leading to inhibition of cell migration. In addition, inactivation of R-Ras by overexpression of the R-Ras–specific GAP or knockdown of R-Ras by RNA interference was sufficient for suppressing β1 integrin activation and cell migration in response to the ECM stimulation. Thus, we conclude that R-Ras activity is critical for ECM-mediated β1 integrin activation and cell migration and that inactivation of R-Ras by Sema4D/Plexin-B1–mediated R-Ras GAP activity controls cell migration by modulating the activity of β1 integrins.

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Mitali Das ◽  
Sujay Ithychanda ◽  
Kamila Bledzka ◽  
Jun Qin ◽  
Edward F Plow

Cell migration and adhesion during hemostasis, angiogenesis and inflammation are dynamically regulated by integrin heterodimeric adhesion receptors. Their interactions with cytosolic proteins, filamin (FLN), talin (TLN) and Kindlin (Kn2) enable them to convey intracellular signals (inside-out-signaling) to the external environment by engaging extracellular matrix ligands. While TLN and Kn2 activate integrins, FLN inhibits cell migration. TLN and Kn2 bind to membrane-proximal and -distal NPxY motifs of β integrin cytoplasmic tails (CTs), respectively, and an integrin binding site for FLN resides in between these two sequences. Competition between TLN and FLN regulates integrin activation, but it is unknown if FLN and Kn2 compete and regulate integrin inside-out signaling. This competition was tested using αIIbβ3 (platelet-specific) and β7 (lymphocyte-specific; strong FLN binder) integrins in multiple cell types. siRNA depletion of FLNA in K562 cells stably expressing αIIbβ3 integrin (K562-αIIbβ3) significantly enhanced PAC-1 (specific for activated αIIbβ3) binding compared to control siRNA, demonstrating its effect on β3 activation. In pulldown assays using GST-β3 CT, Kn2 bound β3 in CHO lysates transfected with Kn2, either alone or with FLN repeat 21; however, FLN binding to β3 CT was observed only when FLN repeat 21 was expressed alone. Under similar conditions using GST-β7 CT, FLN-β7 interaction was not perturbed by Kn2. This was more pronounced in endothelial cell lysates where GST-β7 CT bound endogenous FLNA but not Kn2. Weak talin-β7 CT binding in this assay was noted. Moreover, in K562-αIIbβ3 cells, exogenous Kn2 overcame the suppressive effect of FLN on αIIbβ3 activation. Overall, our data shows that FLN inhibits β3 integrin function, and competition between FLN and Kn2 can indeed regulate integrin activation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huaping Chen ◽  
Ming Yuan ◽  
Chunji Huang ◽  
Zhi Xu ◽  
Mingchun Li ◽  
...  

Rab26 GTPase modulates the trafficking of cell surface receptors, such as G protein-coupled receptors including α2-adrenergic receptors in some cell types. However, the effect of Rab26 on β2-adrenergic receptor (β2-AR) trafficking or/and Toll-like receptor 4 (TLR4) expression in human pulmonary microvascular endothelial cells (HPMECs) is still unclear. Here, we investigated the role of Rab26 in regulating the expression of β2-ARs and TLR4 in HPMECs and the effect of these receptors’ imbalance on endothelial cell barrier function. The results showed that there was unbalance expression in these receptors, where β2-AR expression was remarkably reduced, and TLR4 was increased on the cell membrane after lipopolysaccharide (LPS) treatment. Furthermore, we found that Rab26 overexpression not only upregulated β2-ARs but also downregulated TLR4 expression on the cell membrane. Subsequently, the TLR4-related inflammatory response was greatly attenuated, and the hyperpermeability of HPMECs also was partially relived. Taken together, these data suggest that basal Rab26 maintains the balance between β2-ARs and TLR4 on the cell surface, and it might be a potential therapeutic target for diseases involving endothelial barrier dysfunction.


Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1183-1191 ◽  
Author(s):  
L. Yang ◽  
N.E. Baker

The Drosophila EGF receptor is required for differentiation of many cell types during eye development. We have used mosaic analysis with definitive null mutations to analyze the effects of complete absence of EGFR, Ras or Raf proteins during eye development. The Egfr, ras and raf genes are each found to be essential for recruitment of R1-R7 cells. In addition Egfr is autonomously required for MAP kinase activation. EGFR is not essential for R8 cell specification, either alone or redundantly with any other receptor that acts through Ras or Raf, or by activating MAP kinase. As with Egfr, loss of ras or raf perturbs the spacing and arrangement of R8 precursor cells. R8 cell spacing is not affected by loss of argos in posteriorly juxtaposed cells, which rules out a model in which EGFR acts through argos expression to position R8 specification in register between adjacent columns of ommatidia. The R8 spacing role of the EGFR was partially affected by simultaneous deletion of spitz and vein, two ligand genes, but the data suggest that EGFR activation independent of spitz and vein is also involved. The results prove that R8 photoreceptors are specified and positioned by distinct mechanisms from photoreceptors R1-R7.


2008 ◽  
Vol 205 (7) ◽  
pp. 1673-1685 ◽  
Author(s):  
Jose Rafael Sierra ◽  
Simona Corso ◽  
Luisa Caione ◽  
Virna Cepero ◽  
Paolo Conrotto ◽  
...  

Increased evidence suggests that cancer-associated inflammation supports tumor growth and progression. We have previously shown that semaphorin 4D (Sema4D), a ligand produced by different cell types, is a proangiogenic molecule that acts by binding to its receptor, plexin B1, expressed on endothelial cells (Conrotto, P., D. Valdembri, S. Corso, G. Serini, L. Tamagnone, P.M. Comoglio, F. Bussolino, and S. Giordano. 2005. Blood. 105:4321–4329). The present work highlights the role of Sema4D produced by the tumor microenvironment on neoplastic angiogenesis. We show that in an environment lacking Sema4D, the ability of cancer cells to generate tumor masses and metastases is severely impaired. This condition can be explained by a defective vascularization inside the tumor. We demonstrate that tumor-associated macrophages (TAMs) are the main cells producing Sema4D within the tumor stroma and that their ability to produce Sema4D is critical for tumor angiogenesis and vessel maturation. This study helps to explain the protumoral role of inflammatory cells of the tumor stroma and leads to the identification of an angiogenic molecule that might be a novel therapeutic target.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1599-1606 ◽  
Author(s):  
L. Glazer ◽  
B.Z. Shilo

The elaborate branching pattern of the Drosophila tracheal system originates from ten tracheal placodes on both sides of the embryo, each consisting of about 80 cells. Simultaneous cell migration from each tracheal pit in six different directions gives rise to the stereotyped branching pattern. Each branch contains a fixed number of cells. Previous work has shown that in the dorsoventral axis, localized activation of the Dpp, Wnt and EGF receptor (DER) pathways, subdivides the tracheal pit into distinct domains. We present the role of the Hedgehog (Hh) signaling system in patterning the tracheal branches. Hh is expressed in segmental stripes abutting the anterior border of the tracheal placodes. Induction of patched expression, which results from activation by Hh, demonstrates that cells in the anterior half of the tracheal pit are activated. In hh-mutant embryos migration of all tracheal branches is absent or stalled. These defects arise from a direct effect of Hh on tracheal cells, rather than by indirect effects on patterning of the ectoderm. Tracheal cell migration could be rescued by expressing Hh only in the tracheal cells, without rescuing the ectodermal defects. Signaling by several pathways, including the Hh pathway, thus serves to subdivide the uniform population of tracheal cells into distinct cell types that will subsequently be recruited into the different branches.


1987 ◽  
Vol 65 (3) ◽  
pp. 435-441 ◽  
Author(s):  
D. Befus

In allergic bronchospasm inhaled allergen interacts with specific IgE antibody on the surface of mast cells, inducing the release of mediators, particularly histamine and leukotrienes, which induce bronchoconstriction. Disodium cromoglycate, previously considered to be predominantly a mast cell stabilizing agent, is effective prophylactically in inhibition of early and late phase asthmatic reactions. However, the microenvironment of the airways contains many cell types and the precise role of mast cells is not clear. Lymphocytes, alveolar macrophages, eosinophils, platelets, and neutrophils possess low affinity surface receptors for IgE and can respond to allergen, releasing mediators that have diverse functions. These observations compound the problem of which mediator(s) is most important in pathogenesis of asthma. Moreover, mast cell products modulate the functions of many cells, and thus whether mast cells act directly or indirectly on bronchial smooth muscle requires clarification. Neuropeptides activate or modulate mast cells, and together with evidence of the close association of mast cells and nerves, these observations provide exciting new directions for investigation. Evidence that mast cells from different sites are heterogeneous in their response to stimuli and antiallergic drugs and differ in mediator production and function amplifies the problems identified above. In summary, the role of mast cells in bronchoconstriction is complex and systematic analysis of interactions between mast cells and other cells of the airways is essential.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 450-450
Author(s):  
Bani M Azari ◽  
Danielle F Joseph ◽  
Marc J Braunstein ◽  
H. Uwe Klueppelberg ◽  
Eric LP Smith ◽  
...  

Abstract Abstract 450 Background: Multiple myeloma (MM) is a disease of clonal plasma cells that accumulate in the bone marrow (BM), causing monoclonal immunoglobulin (IG) production, BM failure, osteolytic lesions, and kidney disease. Although initially treatable, tumor cells ultimately become resistant to drug-treatment, and the disease is invariably fatal. Therefore, novel treatment targets need to be identified. The tumor microenvironment, and vascular endothelial cells in particular, play a key role in the adhesion and migration of MM cells and thus govern tumor survival and growth, as well as the acquisition of drug-resistance. Hence, the adhesion/migration systems of MM cells are key potential therapeutic targets. The cell membrane protein JAM-A/F11R is an endothelial cell (EC) adhesion molecule of the IG superfamily, and its expression is upregulated by TNF-a through NF-κB signaling. F11R also alters EC migration and paracellular permeability via stabilization of β1 integrin. We have previously shown that F11R gene expression and serum levels are upregulated in patients with MM compared to healthy controls. In this study, we further explored the functions of F11R within MM cells in order to gain insight into the potential role of this molecule in the progression and treatment of MM. Methods: The MM cell line RPMI-8266 (RPMI) was examined for functional studies in vitro. Informed consent was obtained from all subjects. Primary BM tumor cells were enriched to > 95% CD138+ cells by positive selection using anti-CD138 MACS MicroBeads. The CD138– fraction was used for outgrowth of confluent EPCs (> 98% vWF/CD133/KDR+). Human umbilical vein endothelial cells (HUVECs) served as controls. F11R mRNA levels were assessed by Affymetrix GeneChip analysis and by F11R probe-based real-time PCR compared to a standard curve normalized to GAPDH mRNA levels. F11R protein levels were measured by immunofluorescence (IF) and flow cytometry. The role of F11R in MM cell migration and survival was quantified by examining these functions in RPMI cells in which F11R was knocked down by siRNA silencing and comparing them with control untransfected RPMI cells or cells transfected with a non-targeting siRNA or lipofectamine. Tumor migration and survival were determined by the Millipore QCM Chemotaxis assay (using a 5 micron pore size) and an Promega Cell Proliferation Assay, respectively. Each assay was performed in triplicate and replicated at least twice. Statistical analyses were performed using Student's t-test, two-tailed; P≤.05 was considered significant. Results: Inhibition of F11R gene expression by siRNA resulted in 70% cell death compared to control untransfected (P<.001), non-targeting siRNA (P=.04), or lipofectamine-treated (P=.003) MM cells (RPMI). Moreover, migration of MM cells was also inhibited by 23% after silencing of F11R expression compared to cells transfected with control siRNA (P=.008). Elevated F11R mRNA levels in MM cell lines and patient-derived tumor endothelial progenitor cells (EPCs) was confirmed by IF and flow cytometry using a specific monoclonal antibody, and showed increased expression of both membrane and cytoplasmic F11R compared to controls. Gene expression profiles from 20 patients' corresponding BM tumor cells and EPCs showed that F11R mRNA levels in tumor cells were higher than MM in EPCs by 12.62 fold, (P=1×10-4). However, F11R had a higher level of expression in MM EPCs compared to healthy control EPCs by 2.41 fold (P=.001), reflecting a complex regulatory role of F11 signaling in MM, similar to breast cancer cells (Naik et al., 2008). Conclusion: We show, for the first time, that targeted inhibition of F11R/JAM-A expression bears key anti-myeloma consequences, defined by inhibition of tumor migration and survival. Taken together with elevated gene and protein expression of F11R/JAM-A expression, these results underscore the importance of this receptor as a tumor biomarker and a potential MM treatment target that warrants further validation. Future studies: Under investigation are the in vivo effect of F11R silencing in combination with other anti-myeloma strategies in a murine myeloma model; and also, whether F11R effects on MM cell migration involve stabilization of β1 integrin, as recently described in cardiovascular disease by Azari BM et al. 2010. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 22 (22) ◽  
pp. 4302-4311 ◽  
Author(s):  
Miguel A. Moreno-Mateos ◽  
Águeda G. Espina ◽  
Belén Torres ◽  
María M. Gámez del Estal ◽  
Ana Romero-Franco ◽  
...  

Pituitary tumor transforming gene 1 (PTTG1), also known as securin, has been implicated in many biological functions, including inhibition of sister chromatid separation, DNA repair, organ development, and regulation of the expression and secretion of angiogenic and metastatic factors. Although most of these functions of securin seem to depend on the localization of PTTG1 in the nucleus of the cell, a fraction of the protein has been also detected in the cytoplasm. Here we demonstrate that, in different cell types, a portion of cytoplasmic PTTG1 is associated with the cis face of the Golgi apparatus and that this localization depends on PTTG1 phosphorylation status. In this organelle, PTTG1 forms a complex with proteins involved in microtubule nucleation, including GM130, AKAP450, and γ-tubulin. RNA interference–mediated depletion of PTTG1 produces a delay in centrosomal and noncentrosomal microtubule nucleation. Cells lacking PTTG1 show severe defects in both cell polarization and migration in wound-healing assays. To our knowledge, this is the first study reporting the role of PTTG1 in microtubule nucleation and cell polarization, two processes directly involved in cell migration. We believe that these findings will contribute to understanding the mechanisms underlying PTTG1-mediated biological functions.


Sign in / Sign up

Export Citation Format

Share Document