scholarly journals The SCFSlimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication

2009 ◽  
Vol 184 (2) ◽  
pp. 225-239 ◽  
Author(s):  
Gregory C. Rogers ◽  
Nasser M. Rusan ◽  
David M. Roberts ◽  
Mark Peifer ◽  
Stephen L. Rogers

Restricting centriole duplication to once per cell cycle is critical for chromosome segregation and genomic stability, but the mechanisms underlying this block to reduplication are unclear. Genetic analyses have suggested an involvement for Skp/Cullin/F box (SCF)-class ubiquitin ligases in this process. In this study, we describe a mechanism to prevent centriole reduplication in Drosophila melanogaster whereby the SCF E3 ubiquitin ligase in complex with the F-box protein Slimb mediates proteolytic degradation of the centrosomal regulatory kinase Plk4. We identified SCFSlimb as a regulator of centriole duplication via an RNA interference (RNAi) screen of Cullin-based ubiquitin ligases. We found that Plk4 binds to Slimb and is an SCFSlimb target. Both Slimb and Plk4 localize to centrioles, with Plk4 levels highest at mitosis and absent during S phase. Using a Plk4 Slimb-binding mutant and Slimb RNAi, we show that Slimb regulates Plk4 localization to centrioles during interphase, thus regulating centriole number and ensuring the block to centriole reduplication.

2012 ◽  
Vol 23 (21) ◽  
pp. 4203-4211 ◽  
Author(s):  
Dong-Hwan Kim ◽  
Deanna M. Koepp

The ubiquitin proteasome system plays a pivotal role in controlling the cell cycle. The budding yeast F-box protein Dia2 is required for genomic stability and is targeted for ubiquitin-dependent degradation in a cell cycle–dependent manner, but the identity of the ubiquitination pathway is unknown. We demonstrate that the Hect domain E3 ubiquitin ligase Tom1 is required for Dia2 protein degradation. Deletion of DIA2 partially suppresses the temperature-sensitive phenotype of tom1 mutants. Tom1 is required for Dia2 ubiquitination and degradation during G1 and G2/M phases of the cell cycle, whereas the Dia2 protein is stabilized during S phase. We find that Tom1 binding to Dia2 is enhanced in G1 and reduced in S phase, suggesting a mechanism for this proteolytic switch. Tom1 recognizes specific, positively charged residues in a Dia2 degradation/NLS domain. Loss of these residues blocks Tom1-mediated turnover of Dia2 and causes a delay in G1–to–S phase progression. Deletion of DIA2 rescues a delay in the G1–to–S phase transition in the tom1Δ mutant. Together our results suggest that Tom1 targets Dia2 for degradation during the cell cycle by recognizing positively charged residues in the Dia2 degradation/NLS domain and that Dia2 protein degradation contributes to G1–to–S phase progression.


2004 ◽  
Vol 32 (5) ◽  
pp. 724-727 ◽  
Author(s):  
L.A. Passmore

The APC (anaphase-promoting complex) is a multisubunit E3 ubiquitin ligase that targets cell-cycle-related proteins for degradation by the 26 S proteasome. The APC contains at least 13 subunits and is regulated by the binding of co-activator proteins and by phosphorylation. It is not known why the APC contains 13 subunits when many other ubiquitin ligases are small single-subunit enzymes. In the present study, the structures and functions of individual APC subunits are discussed. By dissecting the roles of its parts, we hope to gain insight into the mechanism of the intact APC.


2020 ◽  
Author(s):  
Andrew P. Porter ◽  
Gavin R. M. White ◽  
Erinn-Lee Ogg ◽  
Helen J. Whalley ◽  
Angeliki Malliri

SummaryCentriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. A key component of this control is the regulated degradation of PLK4, the master regulator of centriole duplication. Here we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4, centriole overduplication and ultimately to lagging chromosomes at anaphase and aneuploidy. The effects of Tiam1 depletion can be rescued by re-expression of wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein βTRCP, implying that Tiam1 regulates PLK4 levels through promoting βTRCP-mediated degradation.


2012 ◽  
Vol 446 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Salvador Moncada ◽  
E. Annie Higgs ◽  
Sergio L. Colombo

The activity of key metabolic enzymes is regulated by the ubiquitin ligases that control the function of the cyclins; therefore the activity of these ubiquitin ligases explains the coordination of cell-cycle progression with the supply of substrates necessary for cell duplication. APC/C (anaphase-promoting complex/cyclosome)-Cdh1, the ubiquitin ligase that controls G1- to S-phase transition by targeting specific degradation motifs in cell-cycle proteins, also regulates the glycolysis-promoting enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) and GLS1 (glutaminase 1), a critical enzyme in glutaminolysis. A decrease in the activity of APC/C-Cdh1 in mid-to-late G1 releases both proteins, thus explaining the simultaneous increase in the utilization of glucose and glutamine during cell proliferation. This occurs at a time consistent with the point in G1 that has been described as the nutrient-sensitive restriction point and is responsible for the transition from G1 to S. PFKFB3 is also a substrate at the onset of S-phase for the ubiquitin ligase SCF (Skp1/cullin/F-box)-β-TrCP (β-transducin repeat-containing protein), so that the activity of PFKFB3 is short-lasting, coinciding with a peak in glycolysis in mid-to-late G1, whereas the activity of GLS1 remains high throughout S-phase. The differential regulation of the activity of these proteins indicates that a finely-tuned set of mechanisms is activated to fulfil specific metabolic demands at different stages of the cell cycle. These findings have implications for the understanding of cell proliferation in general and, in particular, of cancer, its prevention and treatment.


2017 ◽  
Vol 28 (15) ◽  
pp. 2123-2134 ◽  
Author(s):  
Akshari Gupta ◽  
Yuki Tsuchiya ◽  
Midori Ohta ◽  
Gen Shiratsuchi ◽  
Daiju Kitagawa

The decision to commit to the cell cycle is made during G1 through the concerted action of various cyclin–CDK complexes. Not only DNA replication, but also centriole duplication is initiated as cells enter the S-phase. The NIMA-related kinase NEK7 is one of many factors required for proper centriole duplication, as well as for timely cell cycle progression. However, its specific roles in these events are poorly understood. In this study, we find that depletion of NEK7 inhibits progression through the G1 phase in human U2OS cells via down-regulation of various cyclins and CDKs and also inhibits the earliest stages of procentriole formation. Depletion of NEK7 also induces formation of primary cilia in human RPE1 cells, suggesting that NEK7 acts at least before the restriction point during G1. G1-arrested cells in the absence of NEK7 exhibit abnormal accumulation of the APC/C cofactor Cdh1 at the vicinity of centrioles. Furthermore, the ubiquitin ligase APC/CCdh1continuously degrades the centriolar protein STIL in these cells, thus inhibiting centriole assembly. Collectively our results demonstrate that NEK7 is involved in the timely regulation of G1 progression, S-phase entry, and procentriole formation.


2021 ◽  
pp. jcs.252502
Author(s):  
Andrew P. Porter ◽  
Hannah Reed ◽  
Gavin R. M. White ◽  
Erinn-Lee Ogg ◽  
Helen J. Whalley ◽  
...  

Centriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. Key to this is the regulated degradation of PLK4, the master regulator of centriole duplication. Here we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4 and centriole overduplication, whereas overexpression of Tiam1 can restrict centriole overduplication. Ultimately Tiam1 depletion leads to lagging chromosomes at anaphase and aneuploidy, potential drivers of malignant progression. The effects of Tiam1 depletion on centrosomal PLK4 levels and centriole overduplication can be rescued by re-expression of both wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein βTRCP, implying that Tiam1 regulates PLK4 levels through promoting βTRCP-mediated degradation independently of Rac1 activation.


2017 ◽  
Vol 8 (5) ◽  
pp. e2816-e2816 ◽  
Author(s):  
Valérie Glorian ◽  
Jennifer Allègre ◽  
Jean Berthelet ◽  
Baptiste Dumetier ◽  
Pierre-Marie Boutanquoi ◽  
...  

Abstract The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1015
Author(s):  
Utsa Bhaduri ◽  
Giuseppe Merla

Ubiquitination is a post-translational modification that has pivotal roles in protein degradation and diversified cellular processes, and for more than two decades it has been a subject of interest in the biotech or biopharmaceutical industry. Tripartite motif (TRIM) family proteins are known to have proven E3 ubiquitin ligase activities and are involved in a multitude of cellular and physiological events and pathophysiological conditions ranging from cancers to rare genetic disorders. Although in recent years many kinds of E3 ubiquitin ligases have emerged as the preferred choices of big pharma and biotech startups in the context of protein degradation and disease biology, from a surface overview it appears that TRIM E3 ubiquitin ligases are not very well recognized yet in the realm of drug discovery. This article will review some of the blockbuster scientific discoveries and technological innovations from the world of ubiquitination and E3 ubiquitin ligases that have impacted the biopharma community, from biotech colossuses to startups, and will attempt to evaluate the future of TRIM family proteins in the province of E3 ubiquitin ligase-based drug discovery.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Shirin Doroudgar ◽  
Mirko Völkers ◽  
Donna J Thuerauf ◽  
Ashley Bumbar ◽  
Mohsin Khan ◽  
...  

The endoplasmic reticulum (ER) is essential for protein homeostasis, or proteostasis, which governs the balance of the proteome. In addition to secreted and membrane proteins, proteins bound for many other cellular locations are also made on ER-bound ribosomes, emphasizing the importance of protein quality and quantity control in the ER. Unlike cytosolic E3 ubiquitin ligases studied in the heart, synoviolin/Hrd1, which has not been studied in the heart, is an ER transmembrane E3 ubiquitin ligase, which we found to be upregulated upon protein misfolding in cardiac myocytes. Given the strategic location of synoviolin in the ER membrane, we addressed the hypothesis that synoviolin is critical for regulating the balance of the proteome, and accordingly, myocyte size. We showed that in vitro, adenovirus-mediated overexpression of synoviolin decreased cardiac myocyte size and protein synthesis, but unlike atrophy-related ubiquitin ligases, synoviolin did not increase global protein degradation. Furthermore, targeted gene therapy using adeno-associated virus 9 (AAV9) showed that overexpression of synoviolin in the left ventricle attenuated maladaptive cardiac hypertrophy and preserved cardiac function in mice subjected to trans-aortic constriction (AAV9-control TAC = 22.5 ± 6.2% decrease in EF vs. AAV9-synoviolin TAC at 6 weeks post TAC; P<0.001), and decreased mTOR activity. Since calcium is a major regulator of cardiac myocyte size, we examined the effects of synoviolin gain- or loss-of-function, using AAV9-synoviolin, or an miRNA designed to knock down synoviolin, respectively. While synoviolin gain-of-function did not affect calcium handling in isolated adult myocytes, synoviolin loss-of-function increased calcium transient amplitude (P<0.01), prolonged spark duration (P<0.001), and increased spark width (P<0.001). Spark frequency and amplitude were unaltered upon synoviolin gain- or loss-of-function. Whereas SR calcium load was unaltered by synoviolin loss-of-function, SERCA-mediated calcium removal was reduced (P<0.05). In conclusion, our studies suggest that in the heart, synoviolin is 1) a critical component of proteostasis, 2) a novel determinant of cardiac myocyte size, and 3) necessary for proper calcium handling.


Sign in / Sign up

Export Citation Format

Share Document