scholarly journals Dynamin2- and endothelial nitric oxide synthase–regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli

2011 ◽  
Vol 192 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Zhimin Wang ◽  
Ceba Humphrey ◽  
Nicole Frilot ◽  
Gaofeng Wang ◽  
Zhongzhen Nie ◽  
...  

Invasion of bladder epithelial cells by uropathogenic Escherichia coli (UPEC) contributes to antibiotic-resistant and recurrent urinary tract infections (UTIs), but this process is incompletely understood. In this paper, we provide evidence that the large guanosine triphosphatase dynamin2 and its partner, endothelial nitric oxide (NO) synthase (NOS [eNOS]), mediate bacterial entry. Overexpression of dynamin2 or treatment with the NO donor S-nitrosothiols increases, whereas targeted reduction of endogenous dynamin2 or eNOS expression with ribonucleic acid interference impairs, bacterial invasion. Exposure of mouse bladder to small molecule NOS inhibitors abrogates infection of the uroepithelium by E. coli, and, concordantly, bacteria more efficiently invade uroepithelia isolated from wild-type compared with eNOS−/− mice. E. coli internalization promotes rapid phosphorylation of host cell eNOS and NO generation, and dynamin2 S-nitrosylation, a posttranslational modification required for the bacterial entry, also increases during E. coli invasion. These findings suggest that UPEC escape urinary flushing and immune cell surveillance by means of eNOS-dependent dynamin2 S-nitrosylation and invasion of host cells to cause recurrent UTIs.

2008 ◽  
Vol 76 (9) ◽  
pp. 3869-3880 ◽  
Author(s):  
Natalia Korotkova ◽  
Yuliya Yarova-Yarovaya ◽  
Veronika Tchesnokova ◽  
Nina Yazvenko ◽  
Mike A. Carl ◽  
...  

ABSTRACT The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, β1 integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an “invasin,” is not required for β1 integrin recruitment or bacterial internalization.


2001 ◽  
Vol 69 (7) ◽  
pp. 4572-4579 ◽  
Author(s):  
Matthew A. Mulvey ◽  
Joel D. Schilling ◽  
Scott J. Hultgren

ABSTRACT The vast majority of urinary tract infections are caused by strains of uropathogenic Escherichia coli that encode filamentous adhesive organelles called type 1 pili. These structures mediate both bacterial attachment to and invasion of bladder epithelial cells. However, the mechanism by which type 1 pilus-mediated bacterial invasion contributes to the pathogenesis of a urinary tract infection is unknown. Here we show that type 1-piliated uropathogens can invade the superficial epithelial cells that line the lumenal surface of the bladder and subsequently replicate, forming massive foci of intracellular E. coli termed bacterial factories. In response to infection, superficial bladder cells exfoliate and are removed with the flow of urine. To avoid clearance by exfoliation, intracellular uropathogens can reemerge and eventually establish a persistent, quiescent bacterial reservoir within the bladder mucosa that may serve as a source for recurrent acute infections. These observations suggest that urinary tract infections are more chronic and invasive than generally assumed.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2016 ◽  
Vol 84 (11) ◽  
pp. 3220-3231 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Tomohiro Agata ◽  
Hirofumi Asano ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infections (UTIs). This bacterium adheres to and invades the host cells in the bladder, where it forms biofilm-like polymicrobial structures termed intracellular bacterial communities (IBCs) that protect UPEC from antimicrobial agents and the host immune systems. Using genetic screening, we found that deletion of the fur gene, which encodes an iron-binding transcriptional repressor for iron uptake systems, elevated the expression of type I fimbriae and motility when UPEC was grown under iron-rich conditions, and it led to an increased number of UPEC cells adhering to and internalized in bladder epithelial cells. Consequently, the IBC colonies that the fur mutant formed in host cells were denser and larger than those formed by the wild-type parent strain. Fur is inactivated under iron-restricted conditions. When iron was depleted from the bacterial cultures, wild-type UPEC adhesion, invasion, and motility increased, similar to the case with the fur mutant. The purified Fur protein bound to regions upstream of fimA and flhD , which encode type I fimbriae and an activator of flagellar expression that contributes to motility, respectively. These results suggest that Fur is a repressor of fimA and flhD and that its repression is abolished under iron-depleted conditions. Based on our in vitro experiments, we conclude that UPEC adhesion, invasion, IBC formation, and motility are suppressed by Fur under iron-rich conditions but derepressed under iron-restricted conditions, such as in patients with UTIs.


2019 ◽  
Author(s):  
Shuzhen Xiao ◽  
Peng Cui ◽  
Wanliang Shi ◽  
Ying Zhang

AbstractEscherichia coli is the most dominant pathogen causing urinary tract infections (UTIs), but the current most frequently prescribed antibiotics do not always effectively cure the infection due to quiescent persister bacteria. While it has been reported that some essential oils have antimicrobial activity against growing E. coli, the activity of essential oils against the non-growing stationary phase E. coli which is enriched in persisters has not been investigated. We evaluated the activity of 140 essential oils against stationary phase uropathogenic E. coli UTI89 and identified 39, 8 and 3 essential oils at 0.5%, 0.25% and 0.125% concentrations to have high activity against stationary phase E. coli. Among the top eight essential oils, Oregano showed higher activity than the known persister drug tosufloxacin. The other top seven hits included Allspice, Bandit "Thieves", Cinnamon bark, Syzygium aromaticum, Health shield, Cinnamon leaf and Clove bud. In Oregano essential oil drug combination studies with common UTI antibiotics, Oregano plus quinolone drugs (tosufloxacin, levofloxacin, ciprofloxacin) completely eradicated all stationary phase E. coli cells, partially enhanced the activity of nitrofurantoin, but had no apparent enhancement for fosfomycin, meropenem and cefdinir. Our findings may facilitate development of more effective treatments for persistent UTIs.


2011 ◽  
Vol 5 (12) ◽  
pp. 840-849 ◽  
Author(s):  
José Molina-López ◽  
Gerardo Aparicio-Ozores ◽  
Rosa María Ribas-Aparicio ◽  
Sandra Gavilanes-Parra ◽  
María Elena Chávez-Berrocal ◽  
...  

Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.


2018 ◽  
Vol 12 (08) ◽  
pp. 608-615 ◽  
Author(s):  
Belayneh Regasa Dadi ◽  
Tamrat Abebe ◽  
Lixin Zhang ◽  
Adane Mihret ◽  
Workeabeba Abebe ◽  
...  

Introduction: Urinary tract infection is a major cause of morbidity and mortality worldwide. Uropathogenic Escherichia coli bacteria are the most common cause of urinary tract infections. Drug resistant Escherichia coli is results in high levels of treatment failure and can be a significant threat to survival of patients. Methodology: Escherichia coli bacteria were isolated using culture and conventional biochemical tests. Antimicrobial susceptibility testing and plasmid profile were performed using the Kirby Bauer disc diffusion method and plasmid analysis. Data was processed with SPSS version 16.0 and Epi-info version 3.4.1 software. Results: The highest proportion of Escherichia coli isolates was resistant to (86.5%) to ampicillin, followed by ceftazidime (84%), ceftriaxone (80.5%), tetracycline (80%), trimethoprim-sulfamethoxazole (68.5%) and cefotaxime (66%). Escherichia coli isolates were most susceptible to meropenem (100%), imipenem (100%), amikacin (97.5%), nitrofurantoin (95%), ciprofloxacin (85.5%), norfloxacin (85%), chloramphenicol (83.5%), gentamycin (80%) and nalidixic acid (79%). Multidrug resistance (MDR) was observed in most (96.5%) E. coli isolates. Plasmid analysis revealed the presence of plasmid(s) in 165 (82.5%) of the E. coli isolates many of which had a plasmid size of 23 kb. Conclusions: The overall incidence of antibiotic resistance (including MDR) among E. coli in this study was high to commonly used antibiotics, but no drug resistance to meropenem and imipenem was observed. Periodic monitoring of the drug resistance pattern is essential for better management of urinary tract infections, which has direct impact on the outcome of the patient.


2019 ◽  
Vol 13 (06) ◽  
pp. 465-472
Author(s):  
Ulises Hernández-Chiñas ◽  
Alejandro Pérez-Ramos ◽  
Laura Belmont-Monroy ◽  
María E Chávez-Berrocal ◽  
Edgar González-Villalobos ◽  
...  

Introduction: Uropathogenic Escherichia coli (UPEC) are the main etiological agent of urinary tract infections (UTIs). Association between different serotypes and UTIs is known, however, some strains are incapable to be serotyped. The aim of this work was to study bthe phenotypical and genotypical characteristics of 113 non-typeable (NT) and auto-agglutinating (AA) E. coli strains, isolated from UTIs in children and adults. Methodology: The 113 UPEC strains were analyzed by PCR assays using specific primers to determine their serogroups, fimH, papC, iutA, sat, hlyCA and cnf1, virulence associated genes, and chuA, yjaA and TSPE4.C2 for phylogroup determination. Additionally, the diffusion disk method was performed to evaluate the antimicrobial resistance to 18 antimicrobial agents. Results: Using the PCR assay, 63% (71) of the strains were genotyped showing O25 and O75 as the most common serogroups. The virulence genes fimH (86%) and iutA (74%) were the most prevalent, in relation to the phylogroups the commensal (A and B1) and virulent (B2 and D) showed similar frequencies (P > 0.05). The antimicrobial susceptibility test showed a high percentage (73%) of multidrug-resistant strains. Conclusions: The genotyping allowed identifying the serogroup in many of the strains that could not be typed by traditional serology. The strains carried virulence genes and were multidrug-resistant in both, commensal and virulent phylogroups. Our findings revealed that, in addition to the classical UPEC serogroups, there are pathogenic serogroups not reported yet.


Sign in / Sign up

Export Citation Format

Share Document