scholarly journals Taxol binds to cellular microtubules.

1982 ◽  
Vol 94 (3) ◽  
pp. 688-696 ◽  
Author(s):  
J J Manfredi ◽  
J Parness ◽  
S B Horwitz

Taxol is a low molecular weight plant derivative which enhances microtubule assembly in vitro and has the unique ability to promote the formation of discrete microtubule bundles in cells. Tritium-labeled taxol binds directly to microtubules in vitro with a stoichiometry approaching one (Parness, J., and S. B. Horwitz, 1981, J. Cell Biol. 91:479-487). We now report studies in cells on the binding of [3H]taxol and the formation of microtubule bundles. [3H]Taxol binds to the macrophagelike cell line, J774.2, in a specific and saturable manner. Scatchard analysis of the specific binding data demonstrates a single set of high affinity binding sites. Maximal binding occurs at drug concentrations which produce maximal growth inhibition. Conditions which depolymerize microtubules in intact and extracted cells as determined by tubulin immunofluorescence inhibit the binding of [3H]taxol. This strongly suggests that taxol binds specifically to cellular microtubules. Extraction with 0.1% Nonidet P-40 or depletion of cellular ATP by treatment with 10 mM NaN3 prevents the characteristic taxol-induced bundle formation. The binding of [3H]taxol, however, is retained under these conditions. Thus, there formation. The binding of [3H]taxol, however, is retained under these conditions. Thus, there must be specific cellular mechanisms which are required for bundle formation, in addition to the direct binding of taxol to cytoplasmic microtubules.

1987 ◽  
Vol 57 (03) ◽  
pp. 298-301
Author(s):  
William F Clark ◽  
Gerald J M Tevaarwerk ◽  
Bruce D Reid ◽  
Suzanne Hall ◽  
Anita Caveney ◽  
...  

SummaryWe have described the calcium dependence of the IgG Fc receptor (Fc-R) on human platelets by analyzing the direct binding of radiolabelled Fc fragments, monomers and dimers of IgG. Specific binding to platelets was undetectable at 37° C in a calcium-free preparation but readily detected when calcium was restored. Scatchard analysis of the binding data for the calcium-restored platelets permitted calculation of the available Fc-R and the Ka of binding for the different IgG ligands. The mean Ka of binding for 12 normal subjects varied from 107 to 108 L/M, with an equal receptor number measured by Fc fragments and dimers of IgG, but a lesser amount for monomeric IgG. There was no apparent difference in Fc-R number for platelets from 6 normal male versus 6 normal female subjects.At 4° C binding was detectable for dimers and polymers of IgG in a calcium-free preparation and this was markedly increased with recalcification. Thus, our data are consistent with an Fc receptor population on human platelets whose avidity for binding is significantly enhanced in a calcium-restored medium.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ilaria Frasson ◽  
Paola Soldà ◽  
Matteo Nadai ◽  
Sara Lago ◽  
Sara N. Richter

AbstractG-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


1996 ◽  
Vol 313 (2) ◽  
pp. 537-541 ◽  
Author(s):  
Denis REYNAUD ◽  
Peter DEMIN ◽  
Cecil R. PACE-ASCIAK

Hepoxilins have been shown to release calcium from intracellular stores in human neutrophils [Dho, Grinstein, Corey, Su and Pace-Asciak (1990) Biochem. J. 266, 63-68; Laneuville, Reynaud, Grinstein, Nigam and Pace-Asciak (1993) Biochem. J. 295, 393-397]. In this paper we report that tritium-labelled hepoxilin A3 (8S) binds to broken neutrophil membranes in a time-, substrate- and temperature-dependent fashion. Specific binding was displaced with unlabelled hepoxilin A3. Specific binding was greatest at 37 °C. Competitive binding was best observed with unlabelled hepoxilin A3 (8S); the glutathione conjugate, HxA3-C (8S or 8R), or 12(S)-hydroxyeicosatetraenoic acid was less active. Similarly inactive in displacing the bound radiolabelled hepoxilin A3 was leukotriene B4 as well as a variety of prostaglandins and thromboxane B2. Formylmethionyl-leucylphenylalanine was similarly inactive in competing for the hepoxilin binding sites. Specific binding was inhibited by pretreatment of the broken membranes during 30 min at 37 °C with proteinase K, while specific binding of the intact cells was unaffected. Scatchard analysis of binding data revealed a single population of binding sites with apparent KD and Bmax. of 79.3±9.1 nM and 8.86±1.4 pmol/ml per 2×106 cells (±S.E.M.) respectively reflecting approx. 2.67×106 sites/cell. These results demonstrate for the first time that neutrophils contain specific binding sites to hepoxilin A3.


1988 ◽  
Vol 89 (3) ◽  
pp. 331-342
Author(s):  
M.E. Stearns ◽  
K.D. Tew

We have investigated the ability of estramustine to bind to rat brain microtubule-associated proteins (MAPs) and purified MAP-2 in vitro. [3H]estramustine's relative affinity for tubulin and MAPs was assessed by gel filtration chromatography, immunoprecipitation and binding assays. Scatchard analysis demonstrated a specific affinity of the drug for MAP-2. Calculations from kinetic parameters and non-linear regression analysis gave a Kd of 15 microM, and a Bmax of 3.4 × 10(−7)M ml-1. Extrapolation of this value suggested that each MAP-2 molecule binds approximately 20 molecules of estramustine. Microtubule assembly studies and SDS-polyacrylamide gel electrophoresis revealed that at 20–60 microM levels, estramustine inhibited the association of MAPs with taxol microtubules. Turbidity (A350) studies further demonstrated that 20–60 microM-estramustine inhibited MAP-2-driven tubulin assembly and produced microtubule disassembly. Electron-microscopic studies confirmed the centrifugation and turbidity results. The data demonstrated that estramustine can bind MAPs and MAP-2 specifically, thereby inhibiting microtubule assembly.


2019 ◽  
Vol 47 (13) ◽  
pp. 6984-7002 ◽  
Author(s):  
Ingrid Rössler ◽  
Julia Embacher ◽  
Benjamin Pillet ◽  
Guillaume Murat ◽  
Laura Liesinger ◽  
...  

Abstract Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.


1981 ◽  
Author(s):  
P Silber ◽  
T H Finlay

The effect of ristocetin on the binding of 125I-porcine von Willebrand factor to human platelets was studied. Previously, we had shown that 125I-porcine von Willebrand factor binds to human platelets in the absence of ristocetin. The present work demonstrates that binding is stimulated by ristocetin and this stimulation is maximal at a ristocetin concentration of 2 mg/ml. At a ristocetin concentration of 0.5 mg/ml, Scatchard analysis indicates a binding constant of 5.18 × 10-9M and the presence of 105,000 binding sites. This compares with our previous finding, in the absence of ristocetin, of a binding constant of 2.92 × 10-7M and 4760 binding sites. These binding data assume the porcine von Willebrand factor to be a tetramer with a molecular weight of 9 × 105. This study indicates that ristocetin causes tighter binding and increases the number of binding sites on human platelets for porcine von Willebrand factor. Unlabelled porcine von Willebrand factor competitively inhibits the specific binding of the labelled protein and gives a binding constant of 0.17 × 10-9M. Similar results were obtained using human von Willebrand factor.


2011 ◽  
Vol 22 (8) ◽  
pp. 1217-1226 ◽  
Author(s):  
John G. Tooley ◽  
Stephanie A. Miller ◽  
P. Todd Stukenberg

In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 684-692 ◽  
Author(s):  
SP Bajaj ◽  
SI Rapaport ◽  
DS Fierer ◽  
KD Herbst ◽  
DB Schwartz

Antibodies that bind prothrombin without neutralizing its coagulant activity were demonstrated in the plasma of two patients with the acquired hypoprothrombinemia-lupus anticoagulant syndrome. The first patient's plasma contained less than 1% prothrombin activity and no detectable prothrombin antigen. The second patient's plasma contained about 6% of both prothrombin activity and antigen. Neither patient's plasma neutralized the prothrombin coagulant activity of normal plasma or of purified prothrombin added in vitro. Nevertheless, double immunodiffusion studies and binding experiments utilizing 125I- prothrombin demonstrated the presence of prothrombin antibodies in each patient's plasma. A Scatchard analysis of the binding data obtained with different concentrations of 125I-prothrombin and the first patient's plasma indicated the presence of a high affinity antibody, apparent Kd approximately 10(-10)M, and a lower affinity antibody, apparent Kd approximately 10(-9)M. Studies utilizing purified cleavage products of prothrombin suggested that the antibodies were directed against an epitope or epitopes located on the carboxyl-terminal, latent thrombin segment of the prothrombin molecule. We postulate that the acquired hypoprothrombinemia in these two patients and in other reported patients with the acquired hypoprothrombinemia-lupus anticoagulant syndrome stems from rapid clearance from the circulation of prothrombin antigen-antibody complexes.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 600-608 ◽  
Author(s):  
CM Dubois ◽  
FW Ruscetti ◽  
SE Jacobsen ◽  
JJ Oppenheim ◽  
JR Keller

Abstract Having previously shown that interleukin-1 (IL-1) induces the expression of IL-1 receptors (IL-1Rs) on bone marrow (BM) cells in vivo through an indirect mechanism, we studied whether hematopoietic growth factors (HGFs) could induce the expression of IL-1R on BM cells in vitro. In vitro treatment of light-density murine BM (LDBM) cells with either IL-3, IL-6, granulocyte--colony-stimulating factor (CSF), or granulocyte-macrophage--CSF caused a 5- to 10-fold upregulation of IL- 1R expression, whereas IL-1, IL-5, IL-7, and macrophage-CSF had no effect. Scatchard analysis showed one class of IL-1Rs on LDBM cells with an average of 66 +/- 20 sites per cells. After 24 hours of treatment with IL-3, the number of IL-1Rs increased to 413 +/- 125, without effecting the affinity. This effect required protein synthesis, but was independent of cell division. Purified lineage-negative progenitor cells (Lin-) did not express detectable levels of IL-1R, but 24 hours of treatment with IL-3, GM-CSF, and G-CSF stimulated IL-1-- specific binding. Autoradiographic analysis of Lin- cells showed that IL-1R induction by IL-3 occurs on undifferentiated blast cells. Affinity labeling of Lin- cells treated with HGFs showed an increase in a 65-Kd IL-1 binding protein that did not bind or compete with an anti- type I IL-1R antibody, suggesting that these cells expressed type II IL- 1R. These data suggest that IL-1 stimulation of myelopoiesis occurs by a mechanism involving IL-1R upregulation on hematopoietic progenitor cells by HGFs.


1994 ◽  
Vol 107 (12) ◽  
pp. 3403-3412 ◽  
Author(s):  
J.G. Leger ◽  
R. Brandt ◽  
G. Lee

Tau is a neuronal microtubule-associated protein that is required for the development and maintenance of neuronal cell polarity. It promotes microtubule assembly in vitro and we have recently reported that a specific tau region, which spans amino acid residues 154–172 of human fetal tau, is not required for growth of existing microtubules, but is required for nucleation of new microtubules. These residues also confer stronger microtubule binding activity in 3T3 cells. The aim of this study was to investigate the functional organization of tau in relation to its role in promoting process formation in a neuronal model system. We transfected undifferentiated PC12 cells with vectors expressing tau fragments and treated the expressing cells with cytochalasin B to allow process extension. We found that deletion of amino acid residues 154–172 greatly reduced the percentage of transfected cells bearing processes compared to that of cells transfected with full-length tau or with an amino-terminally deleted tau fragment containing residues 154–172. These differences do not appear to result from a quantitative difference in protein expression, as shown by immunoblot analysis of transfected cells. We also observed that while the presence of tau fragments increases acetylation of microtubules, the pattern of acetylation in cells transfected with the fragment missing residues 154–172 is less extensive, suggesting that it does not result in the same level of stabilization as the longer tau fragments. Taxol promoted process outgrowth in cells treated with cytochalasin and restored process outgrowth to cells transfected with the tau fragment lacking this activity. Therefore, process formation involves primarily the stabilization and nucleation of microtubules. We conclude that the residues necessary for conferring microtubule nucleation activity of tau in vitro are important for process formation in vivo. It is likely that these residues influence the binding affinity and therefore the stabilization activity of tau.


Sign in / Sign up

Export Citation Format

Share Document