scholarly journals THE LYMPHOCYTE RESPONSE TO PRIMARY MOLONEY SARCOMA VIRUS TUMORS IN BALB/c MICE

1973 ◽  
Vol 137 (6) ◽  
pp. 1472-1493 ◽  
Author(s):  
E. W. Lamon ◽  
H. Wigzell ◽  
E. Klein ◽  
B. Andersson ◽  
H. M. Skurzak

Adult BALB/c mice were injected with Moloney sarcoma virus (MSV) after which the animals' lymphocytes were examined for activity against Moloney leukemia virus (MLV) antigen-bearing target cells at 5-day intervals for 30 days. Lymphocytes from these animals and appropriately matched controls were fractionated into B cell-deficient (primarily T cells) and T cell-deficient (primarily B cells) subpopulations. Macrophages were removed using iron powder and magnetism. The unfractionated lymphocytes, T cells, and non-T cells were then tested in microcytotoxicity tests. Antigen-specific activity was found in the unfractionated lymphocytes from animals that had not yet developed palpable tumors and from regressor animals. The T cells were active just before tumor development and just after regression; however, by day 30 after virus infection (8–10 days after regression) the T cell subpopulation was much less active. The non-T cell subpopulation was also active before tumor development and soon after regression. However, this activity continued to rise after regression and was highest at 30 days. At day 15 (peak tumor size) neither subpopulation was active. The activity was demonstrated to be specific for the MLV-determined cell surface antigen by testing on control target cells that were MLV antigen negative and by comparison of the inhibitory effects with lymphocytes immune to a nonpertinent antigen as well as normal lymphocytes. The non-T cells were tested for activity before and after removal of macrophages with iron powder and magnetism. Such cells were significantly more active after removal of the macrophages. These data demonstrate specific T cell and non-T cell activity in microcytotoxicity tests with a tumor-specific system and strongly suggest that the non-T cell activity described herein is a B cell function.

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2089-2097 ◽  
Author(s):  
Cecilia Gidlöf ◽  
Mikael Dohlsten ◽  
Peter Lando ◽  
Terje Kalland ◽  
Christer Sundström ◽  
...  

Abstract The bacterial superantigen staphylococcal enterotoxin A (SEA) is an efficient activator of cytotoxic T cells when presented on major histocompatibility complex (MHC) class II molecules of target cells. Our previous studies showed that such SEA-directed T cells efficiently lysed chronic B-lymphocytic leukemia (B-CLL) cells. Next, we made a mutated SEA–protein A (SEAm-PA) fusion protein with more than 1,000-fold reduced binding affinity for MHC class II compared with native SEA. The fusion protein was successfully used to direct T cells to B-CLL cells coated with different B lineage–directed monoclonal antibodies (MoAbs). In this communication, we constructed a recombinant anti-CD19-Fab-SEAm fusion protein. The MHC class II binding capacity of the SEA part was drastically reduced by a D227A point mutation, whereas the T-cell activation properties were retained. The Fab part of the fusion protein displayed a binding affinity for CD19+ cells in the nanomolar range. The anti-CD19-Fab-SEAm molecule mediated effective, specific, rapid, and perforin-like T-cell lysis of B-CLL cells at low effector to target cell ratios. Normal CD19+ B cells were sensitive to lysis, whereas CD34+ progenitor cells and monocytes/macrophages were resistant. A panel of CD19+ B-cell lines representing different B-cell developmental stages were efficiently lysed, and the sensitivity correlated with surface ICAM-1 expression. The anti-CD19-Fab-SEAm fusion protein mediated highly effective killing of tumor biopsy cells representing several types of B-cell non-Hodgkin's lymphoma (B-NHL). Humanized severe combined immune deficiency (SCID) mice carrying Daudi lymphoma cells were used as an in vivo therapy model for evaluation of the anti-CD19-Fab-SEAm fusion protein. Greater than 90% reduction in tumor weight was recorded in anti-CD19-Fab-SEAm–treated animals compared with control animals receiving an irrelevant Fab-SEAm fusion protein. The present results indicate that MoAb-targeted superantigens (SAgs) may represent a promising approach for T-cell–based therapy of CD19+ B-cell malignancies.


1995 ◽  
Vol 4 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Farida Bouzahzah ◽  
Alain Bosseloir ◽  
Ernst Heinen ◽  
Léon J. Simar

We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+cells, mostly located in the germinal center (GC), and CD4+CD57-cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+CD57-cells, CD4+CD57+cells did not markedly enhance B-cell proliferation. Even when sIgD-B cells typical of germinal center cells were tested, the CD4 CD57 cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57+cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57-T cells, whose effect was strong, CD57+T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+cells on K562 target cells. Unlike NK cells, neither CD4+CD57+nor CD4+CD57-cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57-cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 7020-7020 ◽  
Author(s):  
Andrea Schub ◽  
Virginie Nägele ◽  
Gerhard Zugmaier ◽  
Christian Brandl ◽  
Youssef Hijazi ◽  
...  

7020 Background: Blinatumomab is an anti-CD19/anti-CD3 bispecific T cell engager (BiTE) that induces target cell-dependent, polyclonal T cell activation and proliferation, resulting in redirected lysis of CD19+ target cells. Methods: In a phase 2 study, adult patients (N=36) with relapsed/refractory B-precursor ALL received continuous blinatumomab IV infusion for 28 days in ≤5 treatment/consolidation cycles. Whole blood and serum samples were collected throughout treatment and analyzed for lymphocyte subpopulations, cytokines, granzyme B, and blinatumomab serum concentrations. Results: Lymphocytes in all patients responded in a similar fashion. After infusion start, peripheral B cell counts dropped to ≤1 B cell/μL in <1 week and remained undetectable throughout treatment. Peripheral T cells showed a redistribution characterized by swift disappearance within the first 2-6 hrs and subsequent recovery to baseline within several days. Otherwise, T cell counts remained at least stable in most patients. In some patients even an expansion of the T cell compartments was observed, most likely due to specific proliferation of activated T cells but could not be defined as prerequisite for treatment efficacy. During the first infusion days, a significant proportion of T cells newly expressed the activation marker CD69, and the T cell effector molecule granzyme B was detectable in serum. Additionally, a transient cytokine release dominated by IL-10, IL-6 and IFN-γ was observed in most patients shortly after first infusion start, which was alleviated or absent in subsequent cycles. Blinatumomab serum steady state concentrations (mean±SD) were 198±61 pg/mL and 694±236 pg/mL at doses of 5 and 15 μg/m²/d, respectively, which is comparable to those from previous studies. Conclusions: Immunopharmacodynamic response to blinatumomab was characterized by B cell depletion, T cell activation and redistribution, and release of granzyme B and cytokines, suggesting T cell engagement according to the expected BiTE mode of action. The tested pharmacodynamic markers did not allow for predictive differentiation between patients achieving a hematologic response and those who did not. Clinical trial information: NCT01209286.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4623-4623 ◽  
Author(s):  
James Kochenderfer ◽  
Steven Feldman ◽  
Yangbing Zhao ◽  
Hui Xu ◽  
Mary Black ◽  
...  

Abstract Adoptive T cell immunotherapy can cause regression of established malignancy. One promising approach is to transfer genes encoding chimeric antigen receptors (CARs) that specifically recognize tumor-associated antigens to T cells before the T cells are adoptively transferred to patients. We have constructed a CAR that consists of an anti-CD19 single chain variable region (scFv) that is coupled to a portion of the CD28 costimulatory molecule and the signaling component of the CD3-zeta chain. CD19 is a promising target for immunotherapy because most malignant B cell express CD19, but the only normal cells that express CD19 are B cells, B cell precursors, and perhaps follicular dendritic cells. We have demonstrated that gamma-retroviruses encoding the anti-CD19 CAR can be used to transduce human T cells and that these transduced T cells specifically recognize CD19+ targets. To transduce T cells, we stimulated T cells with the anti-CD3 monoclonal antibody OKT3 on day 0 then conducted sequential retroviral transductions on day 2 and on day 3. Transductions were performed by spin-loading retroviruses onto RetroNectin (Takara) coated culture plates followed by overnight incubation of the OKT3- stimulated T cells on the plates. Forty-five to sixty-seven percent of T cells expressed the anti-CD19 CAR as measured by flow cytometry 7–8 days after transduction (n=8). Anti-CD19-CAR-transduced CD8+ and CD4+ T cells produced IFNg and IL-2 specifically in response to stimulation with CD19+ target cells. The transduced T cells specifically killed primary chronic lymphocytic leukemia (CLL) cells. T cells from CLL patients that were either untreated or previously treated with fludarabine plus rituximab could be transduced and induced to proliferate sufficiently to provide enough cells for clinical adoptive T cell transfer. In addition, we adapted this protocol for use in CLL patients with very high peripheral blood leukemia cell counts by depleting CD19+ cells using magnetic bead sorting prior to OKT3 stimulation. In preparation for a clinical trial that will enroll patients with advanced B cell malignancies, we have generated a producer cell clone that produces GALV (Gibbon ape leukemia virus)-enveloped gamma-retroviruses encoding the anti-CD19 CAR, and we have produced sufficient retroviral supernatant for the proposed clinical trial under good manufacturing practice (GMP) conditions.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4557-4557 ◽  
Author(s):  
Burton Earle Barnett ◽  
Xinxin Wang ◽  
David L. Hermanson ◽  
Yening Tan ◽  
Eric M. Osertag ◽  
...  

Abstract Chimeric-antigen receptor (CAR)-T cell immunotherapy is a promising type of cancer therapy and substantial progress has been made in developing adoptive T cell approaches for B cell malignancies. B cell maturation antigen (BCMA) is an attractive target for patients with multiple myeloma (MM) due to its high level of expression on tumor cells and restricted expression on normal tissues. Traditionally, the antigen-binding domain of a CAR is a single chain variable fragment (scFv) comprised of heavy chain (HC) and light chain (LC) variable fragments joined by a flexible linker that has been derived from a non-human monoclonal Ab (mAb). However, there are a number of disadvantages to scFv-based CARs including the limited availability of scFv, their potential to elicit antibody responses, and their association with tonic signaling due, in part, to inherent instability and flexibility of the structure and the potential for both HC/LC domain swapping and multimer formation through framework region interactions. Thus, replacement with alternative binding technologies may improve CAR-T efficacy in the clinic. Centyrins are alternative scaffold molecules that bind protein targets with high affinity and specificity, similar to scFv molecules. However, unlike scFv, Centyrins are smaller, derived from human consensus tenascin FN3 domains and are predicted to have decreased immunogenicity. Additionally, a monomeric Centryin in CAR format (i.e. CARTyrin molecule) is less likely to engage in domain swapping or interact with other Centyrins at the cell surface, thereby limiting the potential for the tonic signaling that drives the functional exhaustion of CAR T cells. Centyrins can be isolated against virtually any antigen through ex vivo panning of an extensive Centyrin library, yielding many distinct binders with a range of affinities and target epitopes. Panning with soluble BCMA protein yielded a large pool of BCMA-specific Centyrins, from which 11 distinct monomeric binders and 1 non-monomeric binder were selected for further study in CAR format. In addition, we tested numerous signal peptides, linkers, transmembrane domains and signaling domains to determine optimal configuration. We then created all CARTyrins by fusing each Centyrin with a CD8a leader peptide, spacer and transmembrane domain, as well as an intracellular signaling domain derived from both 4-1BB and CD3ζ. High quality mRNA of each CARTyrin construct was produced in order to rapidly screen CARTyrin cell surface expression and functionality in human pan T cells against BCMA+ targets. We also constructed scFv-based CARs against CD19 and BCMA for comparison. Previously CD3/CD28-stimulated T cells were electroporated (EP) with mRNA encoding each of the 12 anti-BCMA CARTyrins and, the following day, analyzed for surface expression of CARTyrin and their ability to degranulate against BCMA+ tumor cells. All 12 CARTyrins were detected on the cell surface and the 11 monomeric CARTyrins imparted BCMA-specific killing capacity to T cells. Notably, in these assays, CARTyrins were functionally comparable to scFv-based CARs against BCMA or to CD19-specific scFv-based CARs in a parallel assay with CD19+ tumor cells. The 11 functional anti-BCMA CARTyrins were further characterized for functional avidity by determining their activity against a panel of target cells with titrated levels of surface BCMA expression. To create this panel, various amounts of high quality BCMA mRNA were electroporated into BCMA- K562 tumor cells. After 4 hours of co-culture with the panel of BCMA expressing cells, CARTyrin+ T cell activity was measured as a function of CD107a expression. We observed a range of activities by each CARTyrin and show that this assay can be utilized to determine the minimal effective dose of BCMA needed to induce killing by CARTyrin+ cells. Furthermore, we establish that certain BCMA-specific CARTyrins are responsive to target cells with extremely low levels of surface BCMA expression. These results confirm that Centyrins are viable replacements for scFv in the construction of functional CARs and establish their potential utility in generating novel BCMA-specific CAR molecules, as well as other novel targetable tumor antigens. Disclosures Barnett: Poseida Therapeutics: Employment. Wang:Poseida Therapeutics: Employment. Hermanson:Poseida Therapeutics: Employment. Tan:Poseida Therapeutics: Employment. Osertag:Poseida Therapeutics: Employment, Equity Ownership. Shedlock:Poseida Therapeutics: Employment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhitao Ying ◽  
Ting He ◽  
Xiaopei Wang ◽  
Wen Zheng ◽  
Ningjing Lin ◽  
...  

Abstract Background The unprecedented efficacy of chimeric antigen receptor T (CAR-T) cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumors. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo. Methods NALM-6, a human B-cell acute lymphoblastic leukemia (B-ALL) cell line, was used as target cells. CAR-T cells were injected into a mice model with or without target cells. Then we measured the distribution of CAR-T cells in mice. In addition, an exploratory clinical trial was conducted in 13 r/r B-cell non-Hodgkin lymphoma (B-NHL) patients, who received CAR-T cell infusion. The dynamic changes in patient blood parameters over time after infusion were detected by qPCR and flow cytometry. Results CAR-T cells still proliferated over time after being infused into the mice without target cells within 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at week 6. In the clinical trial, we found that CAR-T cells peaked at 7–21 days after infusion and lasted for 420 days in peripheral blood of patients. Simultaneously, mild side effects were observed, which could be effectively controlled within 2 months in these patients. Conclusions CAR-T cells can expand themselves with or without target cells in mice, and persist for a long time in NHL patients without serious side effects. Trial registration The registration date of the clinical trial is May 17, 2018 and the trial registration numbers is NCT03528421.


Author(s):  
Odelaisy León-Triana ◽  
Soukaina Sabir ◽  
Gabriel F. Calvo ◽  
Juan Belmonte-Beitia ◽  
Salvador Chulián ◽  
...  

AbstractImmunotherapies use components of the patient immune system to selectively target cancer cells. The use of CAR T cells to treat B-cell malignancies – leukaemias and lymphomas– is one of the most successful examples, with many patients experiencing long-lasting complete responses to this therapy. This treatment works by extracting the patient’s T cells and adding them the CAR group, which enables them to recognize and target cells carrying the antigen CD19+, that is expressed in these haematological tumors.Here we put forward a mathematical model describing the time response of leukaemias to the injection of CAR T-cells. The model accounts for mature and progenitor B-cells, tumor cells, CAR T cells and side effects by incorporating the main biological processes involved. The model explains the early post-injection dynamics of the different compartments and the fact that the number of CAR T cells injected does not critically affect the treatment outcome. An explicit formula is found that provides the maximum CAR T cell expansion in-vivo and the severity of side effects. Our mathematical model captures other known features of the response to this immunotherapy. It also predicts that CD19+ tumor relapses could be the result of the competition between tumor and CAR T cells analogous to predator-prey dynamics. We discuss this fact on the light of available evidences and the possibility of controlling relapses by early re-challenging of the tumor with stored CAR T cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 734-734
Author(s):  
Miriam Y Kim ◽  
Matthew L Cooper ◽  
Julie K Ritchey ◽  
Julia Hollaway ◽  
John F. DiPersio

Abstract Chimeric antigen receptor (CAR) T cells are effective against B cell malignancies and multiple myeloma, but their efficacy has been limited to date for acute myeloid leukemia (AML). We sought to investigate whether there were fundamental differences in targeting B cell antigens as compared to myeloid antigens with CAR T cells, that may shed light on the mechanism of CAR T cell resistance in patients with AML. For these studies, we utilized human CAR T cells targeting CD19 (CART19) and CD33 (CART33), canonical B cell and myeloid cell antigens, respectively. To ensure that the potency of the two CAR constructs were equivalent, we generated dual CD19 and CD33 expressing cell lines, by adding CD33 to Ramos, a CD19+ B lymphoblastic cell line, and adding CD19 to THP-1, a CD33+ myeloid cell line. We confirmed that CART19 and CART33 were equally potent against CD33+Ramos and CD19+THP-1 cells. To investigate the influence of normal hematopoietic cells on CAR T cell behavior, we incubated CD19+THP-1 cells with CART19 and CART33 in the presence of peripheral blood (PB) or bone marrow (BM) mononuclear cells. We found that both PB and BM enhanced tumor clearance to a similar degree for each CAR construct. Additionally, IL-6 was detected in the supernatant of PB or BM co-cultured with CART19 and CART33, and these levels were markedly increased in the presence of tumor cells. Notably, THP-1 cells by themselves produced high levels of IL-6 upon exposure to CAR T cells, likely reflecting the myeloid origin of this cell line, while Ramos cultured with these same CAR T cells did not produce IL-6. We assessed other myeloid cell lines (U937, KG-1, Kasumi-3, Molm13, HL-60, and K562) and also noted IL-6 production when co-cultured with CART33, although the levels were significantly lower than that produced by THP-1. Of note, IL-6 levels were slightly but consistently higher with CART19 than with CART33 in these in vitro assays, which we attribute to the loss of normal myeloid cells from CART33-mediated killing. To study the effects of normal hematopoiesis on human CAR T cell activity in vivo, we injected NSGS mice with human cord blood CD34+ hematopoietic stem cells (HSCs) to generate a human hematopoietic system in these mice, followed by administration of untransduced (UTD) control T cells, CART19 or CART33. To prevent the confounding effect of allogeneic killing, CAR T cells were generated from T cells of the same cord blood product as the CD34+ cells. We confirmed the expected loss of human CD19+ B cells and CD33+ myeloid cells in the peripheral blood after CART19 and CART33 treatment, respectively. Surprisingly, we found that only CART33 treatment led to elevated plasma human IL-6 levels in this model. We then injected CD19+THP-1 cells to the mice after HSC engraftment, to assess the anti-tumor activity of the CAR T cells and to increase the potential for toxicity. Consistent with our in vitro data, mice with a human hematopoietic system cleared tumor more efficiently than mice without prior HSC engraftment after treatment with CART19 or CART33. However, while we observed mild weight loss and IL-6 elevation in mice after CART19 treatment, this effect was much more pronounced in mice that received CART33. We hypothesized that the presence of antigen on normal myeloid cells both increased the toxicity and decreased the efficacy of CART33, due to a massive release of inflammatory cytokines from myeloid cells in the immediate aftermath of CART33 treatment, followed by loss of the augmentation of CAR T cell activity mediated by myeloid cells in the long term. To test this hypothesis, we engrafted mice with either control HSCs or CD33 KO HSCs, followed by injection of THP-1 and CART33. Only mice with CD33 KO HSCs maintained myeloid cells after CART33, as expected. CD33 KO HSC-engrafted mice exhibited less toxicity after CART33 treatment than mice with control HSCs, in that they did not lose weight or demonstrate elevated IL-6 levels. Furthermore, absence of CD33 on myeloid cells led to enhanced CAR T cell expansion and persistence, that resulted in better long-term tumor control. In summary, our data suggests that targeting myeloid antigens with CAR T cells may be intrinsically self-defeating due to loss of myeloid cells that are required for sustained CAR T cell activity. These studies illuminate the challenges when extending CAR T cell therapy to myeloid malignancies, and highlight the importance of normal myeloid cells in augmenting T cell-based immunotherapies. Figure 1 Figure 1. Disclosures Kim: Tmunity: Patents & Royalties; NeoImmune Tech: Patents & Royalties. Cooper: RiverVest: Consultancy; Wugen: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Patents & Royalties; NeoImmune Tech: Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document