scholarly journals Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor.

1995 ◽  
Vol 182 (2) ◽  
pp. 449-457 ◽  
Author(s):  
J G Conway ◽  
J A Wakefield ◽  
R H Brown ◽  
B E Marron ◽  
L Sekut ◽  
...  

Considerable evidence has associated the expression of matrix metalloproteinases (MMPs) with the degradation of cartilage and bone in chronic conditions such as arthritis. Direct evaluation of MMPs' role in vivo has awaited the development of MMP inhibitors with appropriate pharmacological properties. We have identified butanediamide, N4-hydroxy-2-(2-methylpropyl)-N1-[2-[[2-(morpholinyl)ethyl]-,[S- (R*,S*)] (GI168) as a potent MMP inhibitor with sufficient solubility and stability to permit evaluation in an experimental model of chronic destructive arthritis (adjuvant-induced arthritis) in rats. In this model, pronounced acute and chronic synovial inflammation, distal tibia and metatarsal marrow hyperplasia associated with osteoclasia, severe bone and cartilage destruction, and ectopic new bone growth are well developed by 3 wk after adjuvant injection. Rats were injected with Freund's adjuvant on day 0. GI168 was was administered systemically from days 8 to 21 by osmotic minipumps implanted subcutaneously. GI168 at 6, 12, and 25 mg/kg per d reduced ankle swelling in a dose-related fashion. Radiological and histological ankle joint evaluation on day 22 revealed a profound dose related inhibition of bone and cartilage destruction in treated rats relative to rats receiving vehicle alone. A significant reduction in edema, pannus formation, periosteal new bone growth and the numbers of adherent marrow osteoclasts was also noted. However, no significant decrease in polymorphonuclear and mononuclear leukocyte infiltration of synovium and marrow hematopoietic cellularity was seen. This unique profile of antiarthritic activity indicates that GI168 is osteo- and chondro-protective, and it supports a direct role for MMP in cartilage and bone damage and pannus formation in adjuvant-induced arthritis.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Pankaj S. Kothavade ◽  
Vipin D. Bulani ◽  
Dnyaneshwar M. Nagmoti ◽  
Padmini S. Deshpande ◽  
Nitin B. Gawali ◽  
...  

Objective. Achyranthes asperaLinn. (AA) is used in folklore for the treatment of various inflammatory ailments and arthritis like conditions. Anti-inflammatory activity of saponin rich (SR) fraction of AA has been previously reported. The objective of this study was to assess the antiarthritic effect of SR fraction ofAchyranthes asperain adjuvant-induced arthritic rats.Methods.Arthritis was assessed by arthritis score, paw volume, changes in tibiotarsal joint thickness, hyperalgesic parameters, and spleen and thymus index. Haematological, serum, biochemical, and inflammatory cytokine andin vivoantioxidant parameters were measured on the last day of the study.Results.SR fraction significantly suppressed paw swelling and arthritic score and improved the pain threshold in motility and stair climbing tests. There was a reversal in the levels of altered parameters, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and antioxidant parameters like superoxide dismutase, catalase, glutathione, malondialdehyde, and nitric oxide. SR fraction significantly decreased plasma levels of tumor necrosis factor-alpha and interleukin-6. Moreover, histopathology revealed a significant reduction in synovial hyperplasia, inflammatory cell infiltration, and bone destruction in the joints.Conclusion.These observations explain the therapeutic benefit of SR fraction of AA in suppressing the progression of adjuvant-induced arthritis in rats.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (10) ◽  
pp. 18-24
Author(s):  
K. R Subash ◽  
◽  
B. V., Cheriyan ◽  
S. Parvathavarthini ◽  
G. M Bhaarati ◽  
...  

Anti-arthritic activity of Rumalaya Forte (RF), a polyherbal formulation was evaluated by in vivo Complete Freunds Adjuvant induced arthritis animal model in rats. RF 80 mg/kg and 160 mg/kg offered significant anti-inflammatory activity by inhibiting primary lesion on day 5, RF 160 mg/kg body weight has profound anti-arthritic activity than low dose RF 80 mg/kg with significant reduction in mononuclear infiltration, pannus formation and bone erosion in as observed in histological studies. Dexamethasone as standard exhibited a greater reduction in body weight compared to other groups while arthritic score was comparably significant with that of RF 160 mg/kg concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshinori Takashima ◽  
Shinya Hayashi ◽  
Koji Fukuda ◽  
Toshihisa Maeda ◽  
Masanori Tsubosaka ◽  
...  

AbstractWe recently reported that cyclin-dependent kinase inhibitor 1 (p21) deficiency induces osteoarthritis susceptibility. Here, we determined the mechanism underlying the effect of p21 in synovial and cartilage tissues in RA. The knee joints of p21-knockout (p21−/−) (n = 16) and wild type C57BL/6 (p21+/+) mice (n = 16) served as in vivo models of collagen antibody-induced arthritis (CAIA). Arthritis severity was evaluated by immunological and histological analyses. The response of p21 small-interfering RNA (siRNA)-treated human RA FLSs (n = 5 per group) to interleukin (IL)-1β stimulation was determined in vitro. Arthritis scores were higher in p21−/− mice than in p21+/+ mice. More severe synovitis, earlier loss of Safranin-O staining, and cartilage destruction were observed in p21−/− mice compared to p21+/+ mice. p21−/− mice expressed higher levels of IL-1β, TNF-α, F4/80, CD86, p-IKKα/β, and matrix metalloproteinases (MMPs) in cartilage and synovial tissues via IL-1β-induced NF-kB signaling. IL-1β stimulation significantly increased IL-6, IL-8, and MMP expression, and enhanced IKKα/β and IκBα phosphorylation in human FLSs. p21-deficient CAIA mice are susceptible to RA phenotype alterations, including joint cartilage destruction and severe synovitis. Therefore, p21 may have a regulatory role in inflammatory cytokine production including IL-1β, IL-6, and TNF-α.


1984 ◽  
Vol 3 (1) ◽  
pp. 223-234
Author(s):  
Frank Papatheofanis ◽  
Bill Fapatheofanls ◽  
Robert Ray

2021 ◽  
Vol 11 (6) ◽  
pp. 2493
Author(s):  
Karol Kirstein ◽  
Michalina Horochowska ◽  
Jacek Jagiełło ◽  
Joanna Bubak ◽  
Aleksander Chrószcz ◽  
...  

The bone tissue destruction during drilling is still one of the crucial problems in implantology. In this study, the influence of drilling speed, coolant presence, and its temperature on bone tissue was tested using swine rib as a biological model of human jaws. The same method of drilling (with or without coolant) was used in all tested samples. The microscopic investigation estimated the size of the destruction zone and morphology of bone tissue surrounding the drilling canal. The achieved results were statistically elaborated. The study proved that the optimal drilling speed was ca. 1200 rpm, but the temperature of the used coolant had no significant influence on provoked bone destruction. Simultaneously, the drilling system without coolant compared to this with coolant has statistical importance on drilling results. Further in vivo studies will verify the obtained results.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhou ◽  
Jianghua Ming ◽  
Yaming Li ◽  
Bochun Li ◽  
Ming Deng ◽  
...  

AbstractMicroRNAs (miRNAs) encapsulated within exosomes can serve as essential regulators of intercellular communication and represent promising biomarkers of several aging-associated disorders. However, the relationship between exosomal miRNAs and osteoarthritis (OA)-related chondrocytes and synovial fibroblasts (SFCs) remain to be clarified. Herein, we profiled synovial fluid-derived exosomal miRNAs and explored the effects of exosomal miRNAs derived from SFCs on chondrocyte inflammation, proliferation, and survival, and further assessed their impact on cartilage degeneration in a surgically-induced rat OA model. We identified 19 miRNAs within synovial fluid-derived exosomes that were differentially expressed when comparing OA and control patients. We then employed a microarray-based approach to confirm that exosomal miRNA-126-3p expression was significantly reduced in OA patient-derived synovial fluid exosomes. At a functional level, miRNA-126-3p mimic treatment was sufficient to promote rat chondrocyte migration and proliferation while also suppressing apoptosis and IL-1β, IL-6, and TNF-α expression. SFC-miRNA-126-3p-Exos were able to suppress apoptotic cell death and associated inflammation in chondrocytes. Our in vivo results revealed that rat SFC-derived exosomal miRNA-126-3p was sufficient to suppress the formation of osteophytes, prevent cartilage degeneration, and exert anti-apoptotic and anti-inflammatory effects on articular cartilage. Overall, our findings indicate that SFC exosome‐delivered miRNA-126-3p can constrain chondrocyte inflammation and cartilage degeneration. As such, SFC-miRNA-126-3p-Exos may be of therapeutic value for the treatment of patients suffering from OA.


Oncogene ◽  
2021 ◽  
Author(s):  
Yinyin Xu ◽  
Jing Guo ◽  
Jing Liu ◽  
Ying Xie ◽  
Xin Li ◽  
...  

AbstractMyeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.


2021 ◽  
Vol 10 (6) ◽  
pp. 1241
Author(s):  
Yoshiya Tanaka

In rheumatoid arthritis, a representative systemic autoimmune disease, immune abnormality and accompanying persistent synovitis cause bone and cartilage destruction and systemic osteoporosis. Biologics targeting tumor necrosis factor, which plays a central role in the inflammatory process, and Janus kinase inhibitors have been introduced in the treatment of rheumatoid arthritis, making clinical remission a realistic treatment goal. These drugs can prevent structural damage to bone and cartilage. In addition, osteoporosis, caused by factors such as menopause, aging, immobility, and glucocorticoid use, can be treated with bisphosphonates and the anti-receptor activator of the nuclear factor-κB ligand antibody. An imbalance in the immune system in rheumatoid arthritis induces an imbalance in bone metabolism. However, osteoporosis and bone and cartilage destruction occur through totally different mechanisms. Understanding the mechanisms underlying osteoporosis and joint destruction in rheumatoid arthritis leads to improved care and the development of new treatments.


Sign in / Sign up

Export Citation Format

Share Document