scholarly journals Enhancement of Antigen-specific functional responses by neutrophils from allergic patients.

1996 ◽  
Vol 183 (6) ◽  
pp. 2571-2579 ◽  
Author(s):  
J Monteseirín ◽  
M J Camacho ◽  
R Montaño ◽  
E Llamas ◽  
M Conde ◽  
...  

It has been demonstrated that neutrophils from healthy donors or from patients with inflammatory disorders can bind immunoglobulin (Ig) E proteins through binding to Mac-2/epsilon bp. Functional responses to allergens were assessed by measuring the respiratory burst and intracellular Ca2+ levels, and binding of allergens to neutrophils was assessed by flow cytometry analysis and fluorescence microscopy. In this article, we demonstrate that neutrophils sensitized to specific allergens (from allergic patients), but not from healthy donors, are sensitive to allergens of the same type as those that produce clinical allergic symptoms. The activation of neutrophils was analyzed by the induction of a respiratory burst that was detected with luminol-dependent chemiluminescence. Intracellular Ca2+ levels increased parallel to those of the inducing allergens. In addition, the specific binding of allergens on the cell surface was revealed by flow cytometry and allergen-FITC-labeled staining analyses. The present data suggest a restricted recognition of allergen by sensitive neutrophils, probably associated with the specific binding of the allergen to its corresponding IgE molecule, which is bound to the Mac-2/epsilon bp structure. These findings demonstrate a functional role of allergen-associated neutrophils during the allergic state.

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Galileo Escobedo ◽  
Gloria Soldevila ◽  
Guadalupe Ortega-Pierres ◽  
Jesús Ramsés Chávez-Ríos ◽  
Karen Nava ◽  
...  

MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasiteTaenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host andT. crassiceps, and may be considered as target for anti-helminth drugs design.


2001 ◽  
Vol 12 (1) ◽  
pp. 37-46
Author(s):  
RALPH KETTRITZ ◽  
ADRIAN SCHREIBER ◽  
FRIEDRICH C. LUFT ◽  
HERMANN HALLER

Abstract. Antineutrophil cytoplasmic antibodies (ANCA) may be important in the pathophysiology of necrotizing vasculitis. ANCA activate human neutrophils primed with tumor necrosis factor-α (TNF-α) in vitro. TNF-α priming results in translocation of ANCA antigens to the cell surface, where they are recognized by the antibodies. The signaling mechanisms involved in TNF-α priming and subsequent ANCA-induced activation were investigated. TNF-α-primed neutrophils were stimulated with monoclonal antibodies (MAb) to human myeloperoxidase (MPO) and proteinase 3 (PR3), and with preparations of human ANCA (three patients with PR3-ANCA and two patients with MPO-ANCA). Respiratory burst was measured with superoxide dismutase-inhibitable ferricytochrome C reduction and using dihydro-rhodamine-1,2,3. Phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) and the extracellular signal-regulated kinase (ERK) were assessed by immunoblotting. ANCA-antigen translocation was studied by flow cytometry. The tyrosine phosphorylation inhibitor genistein, but not calphostin or staurosporin, resulted in a significant dose-dependent superoxide generation inhibition (11.6 ± 1.7 nmol to 2.1 ± 0.5 for PR3-ANCA, and 16.0 ± 2.8 to 3.3 ± 1.3 for MPO-ANCA). The p38-MAPK inhibitor (SB202190) and the ERK inhibitor (PD98059) diminished PR3-ANCA-mediated superoxide production dose dependently (11.6 ± 1.7 nmol O2- to 1.9 ± 0.6 with 50 μM SB202190 and 4.0 ± 0.6 with 50 μM PD098059, respectively). For MPO-ANCA, the results were similar (16.0 ± 2.8 nmol to 0.9 ± 1.0 nmol with SB202190 and 6.4 ± 2.4 nmol with PD98059, respectively). Western blot showed phosphorylation of both p38-MAPK and ERK during TNF-α priming. The p38-MAPK inhibitor and the ERK inhibitor showed the strongest effect on respiratory burst when added before TNF-α priming, further supporting an important role for both signaling pathways in the priming process. Flow cytometry showed that p38-MAPK inhibition decreased the translocation of PR3 (by 93 ± 2%) and of MPO (by 64 ± 2%). In contrast, no such effect was seen when ERK was inhibited. Thus, p38-MAPK and ERK are important for the TNF-α-mediated priming of neutrophils enabling subsequent ANCA-induced respiratory burst. However, both pathways show differential effects, whereby p38-MAPK controls the translocation of ANCA antigens to the cell surface.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 716-716
Author(s):  
Wenzhuo Zhuang ◽  
Bingzong Li

Abstract Purpose: Tumor cells evade the immune surveillance by up-regulating surface expression of CD47, which interacts with SIRPa on macrophages to elicit the immune checkpoint response. Anti-CD47 antibody (IBI188) has shown promise in treating tumors, including Diffuse large B cell lymphoma (DLBCL). The objective response rate among DLBCL was 73% (ClinicalTrials.gov number, NCT02953509.). The basis of differential therapeutic success between patients remains unknown. Extracellular vesicles (EVs) carry bioactive molecules that influence the immune system. CD47 has be found on surface of EVs. The purpose of this study is to explore whether EV CD47 contributes to immunosuppression and is associated with anti-CD47 response in DLBCL. Methods: Kaplan-Meier curves and Cox regression models were used to analyze PFS and OS. The area under the ROC curve (AUC) was used to assess the predicted validity of the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI) model and the NCCN-IPI+ CD47 model.Immunofluorescence experiment was used to detect the infiltration of M1 and M2 subtype macrophages in DLBCL tumor tissue. M1 and M2 macrophages were generated from peripheral blood mononuclear cells obtained from healthy donors. Immunoelectron microscopy, flow cytometry and western blot were performed to detect CD47 on the surface of the EVs derived from DLBCL cells. The activity of macrophage phagocytosis of DLBCL cells was detected by confocal-based phagocytosis assay and flow cytometry-based phagocytosis assay.In DLBCL xenografts, the IBI188 antibody was a macrophage immune checkpoint inhibitor blocking CD47 that induces tumor-cell phagocytosis.Peripheral blood mononuclear cells from DLBCL patients and healthy donors was collected for EVs purification and subsequent detection of human CD47 proteins by ELISA. Results The elevated expression of CD47 in DLBCL is significantly correlated with poor PFS and OS in a univariate analysis, and is statistically significant after adjusting for the NCCN-IPI in the univariate and multivariate analysis (Figure 1A, B). AUC analysis with cross-validation showed that the combination of the CD47 signature and NCCN-IPI had a better prediction of PFS and OS than without the CD47 signature (Figure 1C). Thus, CD47 in DLBCL can be used as a biomarker of prognosis and developed the prognostic stratification of DLBCL patients.EV CD47 derived from DLBCL cells has the same membrane topology as the cell surface CD47, with its extracellular domain exposed on the surface of the EVs (Figure 1D-G). Moreover, EV CD47 could function similarly to cell-surface CD47 in the suppression of macrophage phagocytosis of DLBCL cells (Figure 1H, I). DLBCL cells that had higher levels of cellular CD47 protein packaged greater amounts of CD47 into EVs, and these EVs displayed an increased binding to SIRPa of macrophages, thus inhibiting macrophage-mediated phagocytosis of DLBCL cells (Figure 1J-O).Antibodies against human CD47 specifically identified human CD47 on the circulating exosomes from mice bearing DLBCL xenografts but not the control mice. The level of circulating EV CD47 positively correlated with tumor size. Injection of EVs derived from DLBCL cells promoted the growth of tumors, whereas pre-treatment of the EVs with anti-CD47 antibodies (IBI188), but not IgG isotype or CD63-blocking antibodies, inhibited the effect (Figure 1P, Q).The presence of CD47 in the EVs isolated from the plasma of DLBCL patients, and the level of CD47 on the circulating EVs was significantly higher in DLBCL patients than that in healthy donors (Figure 1R, S). The receiver ROC curve shows that the level of circulating EV CD47 could distinguish DLBCL patients from healthy donors. Conclusion Our studies suggest that the EV CD47-SIRPa interaction may represent a critical mechanism by which DLBCL cells escape immune-mediated clearance. Our study also raises the possibility that disrupting the interaction between the EV CD47 and macrophage SIRPa is a mechanism in the CD47-SIRPa blockade-based therapies. Moreover, high levels of circulating EV CD47 would follow and correlate positively with the phagocytic activity of macrophages, and reflect the presence of a successful anti-tumor immunity elicited by the anti-CD47 therapy. Together, these findings show that EV CD47 represents an unexplored therapeutic target, which could overcome resistance to current CD47 antibody approaches. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008674
Author(s):  
Mariana M. Chaves ◽  
Sang Hun Lee ◽  
Olena Kamenyeva ◽  
Kashinath Ghosh ◽  
Nathan C. Peters ◽  
...  

There is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from those initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the “Trojan Horse” model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 929-929 ◽  
Author(s):  
Aizhen Yang ◽  
Jihong Dai ◽  
Raymond B. Birge ◽  
Yi Wu

Abstract Abstract 929 Phagocytosis of apoptotic cells by phagocytes, also known as efferocytosis, is essential for maintaining normal tissue homeostasis and regulating immune responses. Defects in rapid clearance of apoptotic cells lead to the release of immunogenic cellular contents, which may cause tissue damage and autoimmune disease. Phagocytic receptors differentiate apoptotic cells from viable cells by recognizing ‘don't eat- or eat-me’ signals on the cell surface. Recently, we and others have reported the role of uPAR in mediating efferocytosis. In this study, we examined the mechanism by which uPAR recognizes and internalizes apoptotic cells. By flow cytometry-based in vivo and in vitro phagocytosis assay, we found that in knockout mice the lack of uPAR expression on macrophages decreased their apoptotic cell engulfing activity by >35%. Conversely, soluble uPAR and polyclonal anti-uPAR antibodies (Ab) suppressed the internalization of apoptotic cells by macrophages. However, there was no defect in uPAR-/- macrophage uptake of viable cells, suggesting that uPAR plays a specific role in phagocytosis of apoptotic cells. We established a HEK 293 cell line expressing human full-length uPAR (293-uPAR). In these cells, uPAR-mediated phagocytosis of apoptotic cells was completely blocked by annexin V in the presence of calcium. The effect of annexin V was not observed in the absence of calcium, indicating that uPAR internalizes apoptotic cells through a phosphatidylserine pathway. We also found that uPAR-mediated uptake of apoptotic cells was completely prevented under serum-free conditions. To identify plasma proteins that may opsonize the uPAR function, we used immunodepletion method to test three known uPAR-binding proteins, vitronectin, uPA and high molecular weight kininogen (HK). Depletion of HK from serum by a polyclonal anti-HK Ab significantly reduced the engulfment of apoptotic cells by either macrophages or 293-uPAR cells in a co-culture system. In contrast, depletion of vitronectin or uPA from serum had little effect. uPAR is a GPI-anchored protein. Upon sucrose gradient ultracentrifugation, the majority of uPAR molecules were co-localized with membrane-bound HK in lipid rafts. The binding capacity of HK to apoptotic cell surface was further analyzed by flow cytometry. Phycoerythrin-labeled HK bound to apoptotic cells in a concentration-dependent manner, saturating at 300 nM. In contrast, HK did not bind to viable cells at concentrations up to 1200 nM. It is known that HK is a key component of the plasma contact system and that apoptotic cells potentiate factor Xa formation. Our new findings of the uPAR-HK-phosphatidylserine axis in efferocytosis suggest that this pathway may modulate the coagulation cascade on the surface of apoptotic cells. This pathway may also play a role in the pathogenesis of autoimmune and thrombotic disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2749-2749
Author(s):  
Montreh Tavakkoli ◽  
Dong H. Lee ◽  
Benjamin Durham ◽  
Stephen S. Chung ◽  
Christopher Y. Park

Abstract CD99 is a 32-kDa glycoprotein involved in leukocyte migration and homotypic cell aggregation. Since its initial discovery as a marker on acute lymphoblastic leukemia (ALL), few studies have investigated its potential targeting and biological role in this disease. We have shown that CD99 is up-regulated in malignant stem cells in acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS), and that monoclonal antibodies (mAbs) targeting CD99 induce cell death. Given that targeting CD99 holds promise in AML/MDS, we sought to determine whether it is an effective target in other hematologic malignancies. We began by screening 15 T-, B-, and plasma cell lines as well as normal peripheral blood and umbilical cord CD34+ cells for CD99 expression by flow cytometry. CD99 expression was 7- and 10-fold higher on 1/1 T-ALL and 1/2 anaplastic large cell lymphoma (ALCL) cell lines compared with CD34+ cells, and 2- and 3-fold higher relative to normal peripheral blood T cells, respectively. However, it was minimally expressed in 11/12 B cell lymphomas, plasma cell dyscrasias, and peripheral T cell neoplasms. CD99 expression (degree, localization) was also assessed on 264 lymphoma patient samples by immunohistochemistry (IHC) using the CD99 mAb, 12E7. We found that 11/20 (55%) T-lymphoblastic lymphomas, 7/16 (44%) angioimmunoblastic T-cell lymphomas, 4/13 (31%) ALCLs, 10/63 (16%) peripheral T-cell lymphomas, and 0/3 (0%) of NK/T cell lymphomas express CD99 by IHC, while only 1/70 (1.4%) diffuse large B cell lymphomas, 2/24 (8%) mantle cell lymphomas, 2/17 (12%) follicular lymphomas, 4/22 (18%) chronic lymphocytic leukemias, and 3/16 (19%) marginal zone lymphomas express CD99. Staining was predominately moderate and cytoplasmic. Using a BioGPS dataset from T-ALL patient bone marrow samples, CD99 transcript was found to be up-regulated in T-ALL bone marrow (n=117) relative to normal bone marrow (n=7) (p<0.0001), and was expressed at similar levels at diagnosis (n=14) and relapse (n=14), suggesting it is stably expressed and may be a candidate therapeutic target. To test whether CD99 mAbs are cytotoxic to T-ALL and ALCL cell lines, cells were incubated with 5µg/ml CD99 mAb in the presence of 7µg/ml anti-IgG antibody, and cell survival was assessed by flow cytometry following 72-hours relative to IgG isotype control. 4/5 T-ALL cell lines (KOPTK1, Loucy, CCRF HSB-2, PF283) were sensitive to the cytotoxicity of CD99 mAb, mediating 30-96% cell death (p≤0.003), with 2/4 cell lines displaying 90-96% cytotoxicity. Remarkably, incubating CD99 mAb with a primary T-ALL patient sample induced 100% cell death within 48 hours of treatment (p<0.0001). 1/2 ALCL cell lines (Karpas-299) were sensitive to cytotoxic CD99 mAb (46% cell death, p=0.02). Furthermore, CD99 mAb treatment induced Annexin V positivity, and cell death occurred independent of complement and within 3 hours of treatment. To determine whether CD99 mAb cytotoxicity depends on the level of CD99 expression, we stably transduced KOPTK1 cells with an optimized CD99 shRNA (199-fold reduction in CD99 mean fluorescence intensity [MFI]), stably transduced CD99-low Mac2A (ALCL) cells with TetOn CD99 (17-fold increase in CD99 MFI), and analyzed the cells for cytotoxicity following 24-hour incubations with CD99 mAbs. CD99 mAb-induced cell death increased from 4.4% to 88% upon overexpressing CD99, and decreased from 89% to 20% upon knocking down CD99, suggesting that cell death is dependent on the level of CD99 expression. To elucidate the functional role of CD99 in T-cell neoplasms, we xenografted KOPTK1 cells expressing CD99 shRNA into sublethally irradiated NOD/SCID/IL-2Rgc-null (NSG) mice. Animals transplanted with CD99 knockdown showed no improved survival compared to controls (n=4 and 5 in each group, respectively). We further evaluated the potential oncogenic role of CD99 in vitro, and observed no effect of CD99 knock down in KOPTK1 or overexpression in Mac2A on cell cycle status or proliferation by PI staining and cell counting. Our data indicate that CD99 is expressed in a subset of T-lineage neoplasms. While there is no evidence for a functional role of CD99 in the growth or survival of T-ALL and ALCL, CD99 can be targeted by CD99 mAbs to induce apoptosis with rapid kinetics and in a manner that is dependent on levels of CD99 expression and independent of complement. Thus, CD99 is a promising target in the treatment of a subset of T-cell neoplasms. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 43 (5) ◽  
pp. 1803-1812 ◽  
Author(s):  
Zhijia Cao ◽  
Huainian Zhang ◽  
Xiaoyan Cai ◽  
Wei Fang ◽  
Dong Chai ◽  
...  

Background/Aims: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a leading cause of cancer-related death worldwide. Luteolin, a flavonoid from traditional Chinese medicine, shows anti-cancer activity in many cancer cells, including HCC. However, the mechanism underlying the action of luteolin in HCC, especially its role in regulating cell autophagy, remains unclear. In the present study, we investigated the role of luteolin in regulating cell autophagy and the role of autophagy in luteolin-induced apoptosis. Methods: The 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT) was used to investigate cell viability. Flow cytometry analysis was used to detect the cell cycle and cell apoptosis. Hoechst 33342 staining was used to detect cell apoptosis. Transmission electron microscopy was used to investigate autophagy. qRT-PCR and western blotting were used to detect apoptosis- and autophagy-related mRNAs and proteins. Results: Luteolin reduced the viability of SMMC-7721 cells in a time and dose-dependent manner, and induced significant G0/G1-phase arrest. In addition, the results of flow cytometry analysis and Hoechst 33342 staining showed that luteolin treatment increased the number of apoptotic cells obviously, and the results of qRT-PCR and western blotting showed that luteolin treatment increased caspase 8 and decreased bcl-2 at the mRNA and protein levels. Furthermore, luteolin increased the number of intracellular autophagosomes, promoted LC3B-I conversion to LC3B-II, and increased Beclin 1 expression. Finally, co-treatment with the autophagy inhibitor chloroquine weakened the effects of luteolin on cell apoptosis. Conclusion: Luteolin induced apoptosis in human liver cancer SMMC-7721 cells, partially via autophagy. Thus, luteolin could be used as a regulator of autophagy in HCC treatment.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 785
Author(s):  
Stanislav Pantelyushin ◽  
Elisabeth Ranninger ◽  
Diego Guerrera ◽  
Gregor Hutter ◽  
Caroline Maake ◽  
...  

Background: Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. Methods: Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. Results: Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. Conclusions: Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.


Sign in / Sign up

Export Citation Format

Share Document