scholarly journals Immune deviation of 2C transgenic intraepithelial lymphocytes in antigen-bearing hosts.

1996 ◽  
Vol 184 (2) ◽  
pp. 493-503 ◽  
Author(s):  
S R Guehler ◽  
J A Bluestone ◽  
T A Barrett

The present study examined self-tolerance for T cell receptor (TCR) alpha beta intestinal intraepithelial lymphocytes (iIELs) using the 2C transgenic (Tg) mouse model specific for a peptide antigen (Ag) presented by the class I major histocompatibility complex H-2Ld. Although Tg+ T cells were largely deleted from the periphery of Ag+ mice, equivalent numbers of Tg iIELs were present in Ag+ compared to Ag- mice. Tg iIELs in Ag- mice contained CD8 alpha beta, CD8 alpha alpha, and CD4-CD8- subsets, whereas only CD8 alpha alpha and CD4-CD8- Tg iIEL subsets were detected in Ag+ mice. Analysis of surface markers revealed that Tg iIELs in Ag+ mice expressed decreased levels of Thy-1 and increased CD45R/B220 as compared to Ag- Tg iIELs. In response to activation with exogenous peptide or immobilized anti-TCR mAB, iIELs from Ag- mice proliferated at high levels and produced interleukin (IL)-2 and interferon (IFN)-gamma, while Tg+ iIELs from Ag+ mice proliferated at low levels and failed to produce detectable IL-2 or IFN-gamma. Activation of sorted iIEL subsets from Ag- mice revealed that CD8 alpha alpha and CD4-CD8- subsets produced low levels of IL-2 and IFN-gamma in response to activation with antigen-presenting cells and added peptide or immobilized anti-TCR mAb, while CD8 alpha beta + iIELs responded to endogenous levels of peptide. In response to APC and exogenous peptide, sorted iIEL subsets from Ag+ mice produced IL-2 and IFN-gamma, and proliferated at greatly reduced levels compared to corresponding subsets from Ag- mice. Analysis of cytokine mRNA levels revealed that activation in vitro induced IL-2 mRNA only in Ag-, but not Ag+ iIELs, whereas a high level of IL-4 mRNA induction was detected in Tg+ iIELs from Ag+ mice, and to a lesser degree, from Ag- mice. These data suggest that tolerance for Tg+ iIELs resulted in the deletion of CD8 alpha beta + subsets and the persistence of Tg+ iIEL subsets with decreased sensitivity to endogenous levels of self-peptide. A comparison of the cytokine profiles expressed by Tg+ iIEL subsets in Ag- and Ag+ mice suggested that tolerance induction had involved the functional deviation of cells from TC1 (T helper-1-like) to a less inflammatory TC2 (T helper-2-like) phenotype capable of mediating humoral immune responses in the mucosa.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 358-358
Author(s):  
Felix S Lichtenegger ◽  
Katharina Mueller ◽  
Wolfgang Hiddemann ◽  
Dolores J Schendel ◽  
Marion Subklewe

Abstract Abstract 358FN2 Dendritic cells (DCs) are important regulators of the human immune response. By means of direct intercellular interactions and secretion of cytokines, they can induce a stimulatory or a regulatory response, depending on the environment in which they developed. In vitro, it is possible to imitate this process by addition of various cytokines. The aim of this study was to evaluate DCs matured by different cytokine cocktails for expression of immunostimulatory and -inhibitory molecules and correspondent activation of T helper 1 (Th1) and natural killer (NK) cells. The selection of these cocktails was guided by potential clinical application and usage in a GMP setting. We compared three different ways of DC generation from peripheral blood monocytes of healthy donors: 1) maturation by a cocktail including the TLR7/8 agonist R848 (TLR-mDCs), 2) DC generation by the standard combination of proinflammatory cytokines (IL-4, GM-CSF, IL-1β, PGE2, TNF-α, and IL-6) applied in many clinical studies so far (cc-mDCs), and 3) addition of IL-10 in order to induce a more regulatory phenotype (IL10-mDCs). The expression of a broad range of costimulatory and coinhibitory molecules (CD80, CD86, CD273, CD274, CD275, CD276, B7-H4, HVEM, CD30L, CD70, CD134L = OX40L, CD137L = 4-1BBL) on the surface of these DC populations was analyzed by FACS. Secretion of various cytokines crucial for interaction with other immune cells (IL-12p70, IL-10, TNF-α, IFN-γ, IL-2, and TGF-β) was measured by cytometric bead array after stimulation with CD40 ligand. In order to assess the functional importance of these signals, we performed in vitro polarization assays for T helper cells after co-culture with DCs and measured the in vitro stimulatory potential of the DCs for natural killer (NK) cells by CD69 upregulation and intracellular IFN-γ staining. We could show that TLR-mDCs were characterized by a predominance of costimulatory (e.g. CD80, CD86) relative to coinhibitory molecules (e.g. CD273, CD274, HVEM). When stimulated by CD40L, they displayed a cytokine profile with very high IL-12p70 and TNF-α, but little if any IL-10 production. In a co-culture with autologous T cells, the combination of these signals resulted in a strong polarization toward IFN-γ secreting Th1 cells, with little or no stimulation of Th2 and Th17 cells. The costimulatory profile of cc-mDCs, in comparison, was shifted toward a lower expression of costimulatory molecules and similar or higher expression of coinhibitory molecules (ratio of CD86 to CD273 expression around 40 compared to > 60 for TLR-mDCs, p < 0.005). No IL-12p70 and low levels of IL-10 were secreted. These signals were reflected in a less pronounced type 1 polarization of T helper cells. IL10-mDCs expressed very low levels of CD80 and CD86 and displayed a coinhibitory molecule pattern similar to cc-mDCs. Additionally, they secreted the immunoregulatory molecule IL-10 in higher amounts and did not activate T helper cells at all. As IL-12p70 is an important factor for NK cell activation, only TLR-mDCs were capable of upregulating the activation marker CD69 on NK cells and inducing significant secretion of IFN-γ. Both Th1 and NK cells play an important role in tumor defense. With this set of data, we clearly showed that TLR-mDCs, in consequence of their positive costimulatory profile and their high IL-12p70 secretion, are superior with respect to type 1 polarization of T cells and activation of NK cells. They are therefore highly suitable for application in cancer immunotherapy. This DC type will be used in a phase I/II trial for postremission therapy in patients with non-favorable AML, which will start in our clinic in 2012. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 182 (5) ◽  
pp. 1357-1367 ◽  
Author(s):  
P Openshaw ◽  
E E Murphy ◽  
N A Hosken ◽  
V Maino ◽  
K Davis ◽  
...  

CD4+ T helper (Th) cells can be classified into different types based on their cytokine profile. Cells with these polarized patterns of cytokine production have been termed Th1 and Th2, and can be distinguished functionally by the production of IFN-gamma and IL-4, respectively. These phenotypes are crucial in determining the type of immune response that develops after antigen priming. There are no surface markers that define them, and cytokine immunoassay or mRNA analysis both have limitations for characterization of single cells. Using immunofluorescent detection of intracellular IFN-gamma and IL-4, we have studied the emergence of Th1 and Th2 cells in response to antigen exposure and the patterns of cytokine synthesis in established T cell clones. IFN-gamma production by Th1 clones was detectable in almost all cells by 4 h, and it continued in most cells for &gt; 24 h. IL-4 production in Th2 cells peaked at 4 h, but declined rapidly. In Th0 cells containing both cytokines, fewer cells produced IFN-gamma, which did not appear until IL-4 synthesis declined. Cocultivation of clones showed no such cross-regulation. Antigen stimulation of transgenic T cells expressing an ovalbumin-specific T cell receptor generated Th2 cells, probably as a result of endogenous IL-4 production. Addition of IL-12 and/or anti-IL-4 caused Th1 cells to develop, while some Th0 cells were seen when IL-12 alone was added. These results show that stimulation in the presence of polarizing stimuli results in cells producing either IFN-gamma or IL-4, but that coproduction can occur in rare cells under defined conditions.


1995 ◽  
Vol 181 (2) ◽  
pp. 713-721 ◽  
Author(s):  
C S Hsieh ◽  
S E Macatonia ◽  
A O'Garra ◽  
K M Murphy

A host's ability to resist certain pathogens such as Leishmania major can depend upon the phenotype of T helper (Th) subset that develops. Different murine genetic backgrounds are known to significantly alter the direction of Th subset development, although the cellular basis of this influence is poorly understood. To examine the basis of this effect we used an in vitro alpha/beta-T cell receptor (TCR) transgenic system for analysis of Th phenotype development. To control for TCR usage, we derived the DO11.10 alpha/beta-TCR transgene in several genetic backgrounds. Our findings suggest that the effects of genetic background on Th phenotype development reside within the T cell, and not the antigen-presenting cell compartment. Transgenic T cells from both the B10.D2 and BALB/c backgrounds showed development toward either the Th1 or Th2 phenotype under the strong directing influence of interleukin (IL) 12 and IL4, respectively. However, when T cells were activated in vitro under neutral conditions in which exogenous cytokines were not added, B10.D2-derived T cells acquired a significantly stronger Th1 phenotype than T cells from the BALB/c background, correspondent with in vivo Th responses to Leishmania in these strains. Importantly, these cytokine differences resulted in distinct functional properties, because B10.D2- but not BALB/c-derived T cells could induce macrophage production of nitric oxide, an important antimicrobial factor. Thus, the genetically determined default Th phenotype development observed in vitro may correspond to in vivo Th subset responses for pathogens such as Leishmania which do not initiate strong Th phenotype-directing signals.


1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


1998 ◽  
Vol 66 (12) ◽  
pp. 5677-5683 ◽  
Author(s):  
Kenji Hirose ◽  
Hirohiko Suzuki ◽  
Hitoshi Nishimura ◽  
Akio Mitani ◽  
Junji Washizu ◽  
...  

ABSTRACT Exogenous interleukin-15 (IL-15) stimulates intestinal intraepithelial lymphocytes (i-IEL) from mice to proliferate and produce gamma interferon (IFN-γ) in vitro. To determine whether endogenous IL-15 is involved in activation of i-IEL during intestinal infection, we examined IL-15 synthesis by intestinal epithelial cells (i-EC) after infection with Listeria monocytogenes in rats. In in vitro experiments, invasion of L. monocytogenes into IEC-6 cells, a rat small intestine epithelial cell line, evidently induced IL-15 mRNA expression coincident with nuclear factor κB (NF-κB) activation, which is essential for IL-15 gene expression. IL-15 synthesis was detected in rat i-EC on day 1 after an oral inoculation of L. monocytogenes in vivo. The numbers of T-cell receptor (TCR) γδ+ T cells, NKR.P1+cells, and CD3+ CD8+ αα cells in i-IEL were significantly increased on day 1 after oral infection. The i-IEL from infected rats produced larger amounts of IFN-γ upon stimulation with immobilized anti-TCR γδ or anti-NKR.P1 monoclonal antibodies. These results suggest that IL-15 produced by i-EC may stimulate significant fractions of i-IEL to produce IFN-γ at an early phase of oral infection with L. monocytogenes.


2021 ◽  
Vol 22 (18) ◽  
pp. 9859
Author(s):  
Anna V. Izosimova ◽  
Diana V. Yuzhakova ◽  
Valeria D. Skatova ◽  
Lilia N. Volchkova ◽  
Elena V. Zagainova ◽  
...  

Recent advances in cancer immunotherapy have great promise for the treatment of solid tumors. One of the key limiting factors that hamper the decoding of physiological responses to these therapies is the inability to distinguish between specific and nonspecific responses. The identification of tumor-specific lymphocytes is also the most challenging step in cancer cell therapies such as adoptive cell transfer and T cell receptor (TCR) cloning. Here, we have elaborated a protocol for the identification of tumor-specific T lymphocytes and the deciphering of their repertoires. B16 melanoma engraftment following anti-PD1 checkpoint therapy provides better antitumor immunity compared to repetitive immunization with heat-shocked tumor cells. We have also revealed that the most error-prone part of dendritic cell (DC) generation, i.e., their maturation step, can be omitted if DCs are cultured at a sufficiently high density. Using this optimized protocol, we have achieved a robust IFNγ response to B16F0 antigens, but only within CD4+ T helper cells. A comparison of the repertoires of IFNγ-positive and -negative cells shows a prominent enrichment of certain clones with putative tumor specificity among the IFNγ+ fraction. In summary, our optimized protocol and the data provided here will aid in the acquisition of broad statistical data and the creation of a meaningful database of B16-specific TCRs.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jing Liu ◽  
Antonio Hernandez-Ono ◽  
Valerie Galton ◽  
Henry Ginsberg

People with low levels of high density lipoprotein cholesterol (HDLC) and apolipoprotein A-I (ApoA-I) have a higher risk of cardiovascular disease. Low levels of HDLC are common in individuals who are insulin resistant (IR), e.g., with metabolic syndrome and type 2 diabetes mellitus (T2DM). Despite the high prevalence of these two disorders, very little work has been reported regarding the molecular pathways linking insulin signaling or action and the levels of either HDLC or ApoA-1. We reported previously that liver specific insulin receptor (InsR) knockout mice (LIRKO) have markedly reduced plasma HDLC levels that increase after restoration of hepatic Akt signaling. In the present study, we created acute LIRKO mice by injecting an albumin-Cre adenovirus (Ad) into InsR floxed mice and observed marked reductions in HDLC, the expression of ApoA-I, and the expression of the gene coding Type1 iodothyronine deiodinase1, a selenoenzyme expressed highly in the liver that converts thyroxine to 3,5,3’-triiodothyronine (T3) or reverse T3. Deiodinase 1 knockout mice also had significantly reduced hepatic ApoA-I mRNA levels. Overexpression of Dio1 in LIRKO restored HDLC and significantly increased the expression of ApoA-I mRNA. In vitro studies showed that the expression of ApoA-I was significantly reduced after knockdown of either InsR or Dio1 expression in HepG2 cells. Moreover, overexpression of Dio1 restored ApoA-I promoter activity that had been decreased by knockdown of InsR. Deletion analysis of ApoAI promoter regions showed that insulin signaling regulated ApoA-I expression by acting on a region which does not contain any thyroid response elements. Pulse-chase experiments in HepG2 cells showed that deficiency of insulin signaling resulted in decreased synthesis and secretion of ApoAI. Our results indicates that defective hepatic insulin signaling results in reduced expression of Dio1 which, in turn, leads to reduced expression of ApoA-I and decreased synthesis and secretion of ApoA-I from hepatocytes. We believe our studies have defined a novel pathway from insulin signaling to ApoA-I synthesis that may lead to new approaches for increasing HDL levels in people with defective insulin signaling.


2019 ◽  
Vol 33 (2) ◽  
pp. 889-896 ◽  
Author(s):  
Sharon Witonsky ◽  
Virginia Buechner‐Maxwell ◽  
Amy Santonastasto ◽  
Robert Pleasant ◽  
Stephen Werre ◽  
...  

2005 ◽  
Vol 79 (12) ◽  
pp. 7355-7362 ◽  
Author(s):  
Michelle A. Swanson-Mungerson ◽  
Robert G. Caldwell ◽  
Rebecca Bultema ◽  
Richard Longnecker

ABSTRACT A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-κB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-κB nuclear translocation independent of BCR cross-linking. Since NF-κB is required to bypass tolerance induction, this LMP2A-dependent NF-κB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


Sign in / Sign up

Export Citation Format

Share Document