scholarly journals Interleukin-10 induces E-selectin on small and large blood vessel endothelial cells.

1996 ◽  
Vol 184 (3) ◽  
pp. 821-829 ◽  
Author(s):  
M Vora ◽  
L I Romero ◽  
M A Karasek

In vitro, expression of E-selectin is largely restricted to endothelial cells activated by inflammatory cytokines. Under activated conditions, cytokines such as interleukin (IL) 10, released by keratinocytes in large quantities, may also increase the expression of E-selectin on the dermal microvasculature. The aim of the present study was to investigate the expression of E-selectin on cultured human dermal microvascular endothelial cells (HDMEC) isolated from neonatal foreskins when exposed to IL-10. Expression of E-selectin was determined by immunofluorescence microscopy, FACS analysis, an HL-60 cell-binding assay, and quantitative polymerase chain reaction (PCR) analysis. For comparison with large blood vessel cells, the expression of E-selectin on human umbilical vein endothelial cells (HUVEC) was also determined in parallel by FACS and reverse transcriptase-PCR analysis under identical conditions. These studies demonstrate that IL-10 induces the expression of E-selectin on both HDMEC and HUVEC and that the level of expression of HDMEC is comparable with that induced by IL-1 beta and tumor necrosis factor-alpha. When HL-60 cells are incubated with HDMEC pretreated with IL-10, a consistent increase in adherence of HL-60 to endothelial cells is observed. This adherence was found to be mediated by L-selectin. PCR analysis and the quantification of E-selectin cDNA by a novel, highly sensitive and specific PCR-immunoassay demonstrate the induction of E-selectin mRNA at the transcriptional level. The induction of the expression of E-selectin by IL-10 on HDMEC may provide additional insights into the pathogenic mechanism of neutrophil accumulation at the site of inflammation in inflammatory skin diseases.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 356 ◽  
Author(s):  
Alessia Lo Curto ◽  
Simona Taverna ◽  
Maria Assunta Costa ◽  
Rosa Passantino ◽  
Giuseppa Augello ◽  
...  

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) “young” and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3990
Author(s):  
Maria Annunziata Carluccio ◽  
Rosanna Martinelli ◽  
Marika Massaro ◽  
Nadia Calabriso ◽  
Egeria Scoditti ◽  
...  

Hydroxytyrosol (HT), a peculiar olive and olive oil phenolic antioxidant, plays a significant role in the endothelial and cardiovascular protection associated with olive oil consumption. However, studies examining the effects of HT on the whole-genome expression of endothelial cells, which are prominent targets for vasculo-protective effects of olive oil polyphenols, have been lacking. This study aims to comprehensively evaluate the genomic effects exerted by HT, at the transcriptional level, in endothelial cells under resting or proinflammatory conditions. Human umbilical vein endothelial cells (HUVECs) were treated with 10 µmol/L HT for 1 h and then stimulated with 5 ng/mL interleukin (IL)-1β for 3 h. Total RNA was extracted, and gene expression profile assessed with microarray analysis. Functional enrichment analysis and pathway analysis were performed by Ingenuity Pathways Analysis. Microarray data were validated by qRT-PCR. Fixing a significance threshold at 1.5-fold change, HT affected the expression of 708 and 599 genes, respectively, in HUVECs under resting and IL-1β-stimulated conditions; among these, 190 were common to both conditions. Unfolded protein response (UPR) and endoplasmic reticulum stress resulted from the two top canonical pathways common between HT and HT-IL-1β affected genes. IL-17F/A signaling was found in the top canonical pathways of HT modified genes under resting unstimulated conditions, whereas cardiac hypertrophy signaling was identified among the pathways affected by HT-IL-1β. The transcriptomic analysis allowed pinpointing immunological, inflammatory, proliferative, and metabolic-related pathways as the most affected by HT in endothelial cells. It also revealed previously unsuspected genes and related gene pathways affected by HT, thus broadening our knowledge of its biological properties. The unbiased identification of novel genes regulated by HT improves our understanding of mechanisms by which olive oil prevents or attenuates inflammatory diseases and identifies new genes to be enquired as potential contributors to the inter-individual variation in response to functional food consumption.


2021 ◽  
Vol 7 ◽  
Author(s):  
Qian Qian Guo ◽  
Jing Gao ◽  
Xiao Wei Wang ◽  
Xian Lun Yin ◽  
Shu Cui Zhang ◽  
...  

Numerous miRNAs have been detected in mitochondria, which play important roles in many physiological and pathophysiological processes. However, the dynamic changes of miRNA distribution in mitochondria and their mechanisms in reactive oxygen species (ROS)-induced endothelial injury remain unclear. Therefore, miRNA levels in whole cells and mitochondria of H2O2-treated endothelial cells were analyzed by small RNA sequencing in the present study. The results showed that H2O2 significantly reduced the relative mitochondrial distribution of dozens of miRNAs in human umbilical vein endothelial cells (HUVECs). Among the high-abundance miRNAs, miR-301a-3p has the most significant changes in the redistribution between cytosol and mitochondria confirmed by absolute quantitative polymerase chain reaction (qPCR). To unravel the mechanism of miR-301a-3p distribution in mitochondria, RNA pull-down followed by label-free quantitative proteomic analysis was performed, and RNA-binding protein Musashi RNA binding protein 2 (MSI2) was found to specifically bind to miR-301a-3p. Western blotting and immunofluorescence colocalization assay showed that MSI2 was located in mitochondria of various cell types. H2O2 significantly downregulated MSI2 expression in whole endothelial cells, promoted the distribution of MSI2 in cytosol and decreased its distribution in the mitochondria. Moreover, overexpression of MSI2 increased the mitochondrial distribution of miR-301a-3p, whereas inhibition of MSI2 decreased its distribution in mitochondria. Thus, MSI2 might be responsible for the distribution of miR-301a-3p between cytosol and mitochondria in endothelial cells. Our findings revealed for the first time that MSI2 was involved in the regulation of miRNA distribution in mitochondria and provided valuable insight into the mechanism of mitochondrial distribution of miRNAs.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Martha Lappas

A prominent feature of inflammatory diseases is endothelial dysfunction. Factors associated with endothelial dysfunction include proinflammatory cytokines, adhesion molecules, and matrix degrading enzymes. At the transcriptional level, they are regulated by the histone deacetylase sirtuin (SIRT) 1 via its actions on the proinflammatory transcription factor nuclear factor-κB (NF-κB). The role of SIRT6, also a histone deacetylase, in regulating inflammation in endothelial cells is not known. The aim of this study was to determine the effect of SIRT6 knockdown on inflammatory markers in human umbilical vein endothelial cells (HUVECs) in the presence of lipopolysaccharide (LPS). LPS decreased expression of SIRT6 in HUVECs. Knockdown of SIRT6 increased the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8), COX-prostaglandin system, ECM remodelling enzymes (MMP-2, MMP-9 and PAI-1), the adhesion molecule ICAM-1, and proangiogenic growth factors VEGF and FGF-2; cell migration; cell adhesion to leukocytes. Loss of SIRT6 increased the expression of NF-κB, whereas overexpression of SIRT6 was associated with decreased NF-κB transcriptional activity. Taken together, these results demonstrate that the loss of SIRT6 in endothelial cells is associated with upregulation of genes involved in inflammation, vascular remodelling, and angiogenesis. SIRT6 may be a potential pharmacological target for inflammatory vascular diseases.


1997 ◽  
Vol 272 (3) ◽  
pp. L418-L425 ◽  
Author(s):  
Y. Suzuki ◽  
T. Aoki ◽  
O. Takeuchi ◽  
K. Nishio ◽  
K. Suzuki ◽  
...  

To investigate the pathogenesis of pulmonary oxygen toxicity, we examined the effect of hyperoxia on adhesion molecule expression in cultured human pulmonary artery endothelial cells (HPAEC) and human umbilical vein endothelial cells (HUVEC). Endothelial cell monolayers were exposed to either hyperoxic (90% O(2)-5% CO(2)) or normoxic (21% O(2)-5% CO(2)) conditions for various periods. The level of intercellular adhesion molecule (ICAM)-1 expression had increased in hyperoxia-exposed HPAEC and HUVEC at 48 h (194 +/- 38 and 233 +/- 56%, respectively; P < 0.001) and at 72 h (200 +/- 43 and 223 +/- 52%, respectively; P < 0.001) compared with normoxic conditions. These hyperoxia-induced ICAM-1 expressions were dose dependently attenuated by a protein kinase C inhibitor (H-7). In contrast, the levels of P-selectin and E-selectin expression in HPAEC and HUVEC were unchanged. The levels of ICAM-1 mRNA and the numbers of adherent neutrophils were increased in HPAEC and HUVEC at 48 and 72 h of hyperoxia. On the other hand, hyperoxia caused neutrophil H(2)O(2) production without affecting the level of CD11/CD18 expression. These results suggest that increased ICAM-1 expression in endothelial cells plays an important role in neutrophil accumulation during hyperoxia.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yubin Chen ◽  
Fen Liu ◽  
Fei Han ◽  
Lizhi Lv ◽  
Can-e Tang ◽  
...  

Objectives. Endothelial cell injury is a critical pathological change during the development of atherosclerosis. Here, we explored the effect of omentin-1 on free fatty acid- (FFA-) induced endothelial cell injury. Methods. An FFA-induced endothelial cell injury model was established to investigate the role of omentin-1 in this process. Cell proliferation was analyzed with the Cell Counting Kit assay and flow cytometry. Scratch and transwell assays were used to evaluate cell migration. Factors secreted by endothelial cells after injury were detected by western blotting, reverse-transcription quantitative polymerase chain reaction, and cellular fluorescence assay. Results. Omentin-1 rescued the FFA-induced impaired proliferation and migration capabilities of human umbilical vein endothelial cells (HUVECs). It decreased the number of THP-1 cells attached to HUVECs in response to injury and inhibited the FFA-induced proinflammatory state of HUVECs. Conclusion. Omentin-1 could partly ameliorate FFA-induced endothelial cell injury.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2684-2692
Author(s):  
KJ Faucette ◽  
LA Fitzgerald ◽  
L Liu ◽  
CJ Parker ◽  
GM Rodgers

Normal human plasma contains procoagulant albumin (PC-Al), an anionic form of albumin that induces tissue factor (TF) activity in human umbilical vein endothelial cells (HUVEC) and monocytes. In this study, we investigated both the interactions between HUVEC and PC-Al and the mechanism by which PC-Al induces TF activity. Binding of PC-Al to HUVEC was specific and reversible. Further studies indicated that membrane- bound PC-Al was not internalized by HUVEC. A potential receptor on HUVEC was suggested by studies in which the capacity of a variety of reagents to inhibit the activity of PC-Al was quantitated. Induction of TF activity by PC-Al was antagonized by dextran sulfate, heparin, fucoidan, and concanavalin A but not by ovalbumin, polyglutamic acid, or polyvinyl sulfate. This competition profile bears similarities to those reported for scavenger receptors that have been identified on both HUVEC and monocytes. Involvement of protein kinase C (PKC) in the PC-Al-induced enhancement of TF activity was suggested by experiments in which staurosporine, an inhibitor of PKC, suppressed the activity of PC-Al. The induction of TF activity by PC-Al was further characterized by using a quantitative polymerase chain reaction assay. Increased TF mRNA was first seen after 1 hour of incubation with PC-Al. Maximal observed expression occurred at 2 hours, but at 5 hours, expression had significantly decreased. Monocytes could also be induced to express TF mRNA after a 2-hour incubation with PC-Al. These results suggest that the functionally relevant binding of PC-Al to HUVEC may be mediated through interactions with a membrane constituent that has some of the properties of a scavenger receptor and that this interaction augments TF activity by enhancing transcription of TF mRNA, at least in part, by a mechanism that is dependent on activation of PKC.


2002 ◽  
Vol 88 (08) ◽  
pp. 321-328 ◽  
Author(s):  
Rebecca Houliston ◽  
Rosemary Keogh ◽  
David Sugden ◽  
Jayesh Dudhia ◽  
Tom Carter ◽  
...  

SummaryWe have previously shown that the serine protease thrombin and other G protein-coupled agonists acutely enhance synthesis and release of prostacyclin from human umbilical vein endothelial cells (HUVEC) through activation of cPLA2α. Here, we show that thrombin and other physiological endothelial cell agonists upregulate COX-2 induction in HUVEC. Thrombin treatment caused a rapid and sustained increase in prostacyclin (PGI2) synthesis from HUVEC. Thrombin and a selective protease-activated receptor-1 (PAR-1) peptide (TRAP) evoked doseand time-dependent increases in COX-2 protein expression which were equivalent to that induced by the proinflammatory cytokine IL-1α. Quantitative and real-time PCR analysis showed enhanced COX-2 mRNA expression in thrombinor TRAP-stimulated HUVEC whereas COX-1 expression was unaffected. A PAR-2 agonist peptide also induced COX-2 protein and mRNA expression with kinetics distinct from those of thrombin, and promoted PGI2 release. These results demonstrate that regulation of COX-2 induction is an important functional response of HUVEC to PAR activation and suggest that PARs promote sustained upregulation of prostanoid production in human endothelium.


Sign in / Sign up

Export Citation Format

Share Document