scholarly journals The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells

2000 ◽  
Vol 192 (9) ◽  
pp. 1365-1372 ◽  
Author(s):  
Frances N. Karanu ◽  
Barbara Murdoch ◽  
Lisa Gallacher ◽  
Dongmei M. Wu ◽  
Masahide Koremoto ◽  
...  

The Notch ligand, Jagged-1, plays an essential role in tissue formation during embryonic development of primitive organisms. However, little is known regarding the role of Jagged-1 in the regulation of tissue-specific stem cells or its function in humans. Here, we show that uncommitted human hematopoietic cells and cells that comprise the putative blood stem cell microenvironment express Jagged-1 and the Notch receptors. Addition of a soluble form of human Jagged-1 to cultures of purified primitive human blood cells had modest effects in augmenting cytokine-induced proliferation of progenitors. However, intravenous transplantation of cultured cells into immunodeficient mice revealed that human (h)Jagged-1 induces the survival and expansion of human stem cells capable of pluripotent repopulating capacity. Our findings demonstrate that hJagged-1 represents a novel growth factor of human stem cells, thereby providing an opportunity for the clinical utility of Notch ligands in the expansion of primitive cells capable of hematopoietic reconstitution.

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Taro Ishigaki ◽  
Kazuhiro Sudo ◽  
Takashi Hiroyama ◽  
Kenichi Miharada ◽  
Haruhiko Ninomiya ◽  
...  

We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES) cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13109 ◽  
Author(s):  
Yoshinori Sato ◽  
Hiroshi Takata ◽  
Naoki Kobayashi ◽  
Sayaka Nagata ◽  
Naomi Nakagata ◽  
...  

Reproduction ◽  
2008 ◽  
Vol 136 (5) ◽  
pp. 543-557 ◽  
Author(s):  
Pedro M Aponte ◽  
Takeshi Soda ◽  
Katja J Teerds ◽  
S Canan Mizrak ◽  
Henk J G van de Kant ◽  
...  

The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study thein vitrobehavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3883-3883 ◽  
Author(s):  
Pratibha Singh ◽  
Louis M. Pelus

Hematopoietic stem cells (HSC) reside in a complex microenvironment (niche) within the bone marrow (BM), where multiple populations of microenvironmental stromal cells regulate and finely tune their proliferation, differentiation and trafficking. Recent studies have shown that mesenchymal stem cells (MSC) are an essential component of the HSC niche. Intrinsic HSC CXCR4-SDF-1 signaling has been implicated in self-renewal and quiescence; however, the role of microenvironment CXCR4-SDF-1 signaling in supporting HSC function remains unclear. We previously demonstrated that microenvironmental stromal cell-derived CXCR4 is important for HSC recovery, as transplantation of wild-type HSC into CXCR4 deficient recipients showed reduced HSC engraftment. In this study, we now show that CXCR4-SDF-1 signaling in nestin+ MSC regulates HSC maintenance under normal homeostatic conditions and promotes hematopoietic regeneration after irradiation. Multivariate flow cytometry analysis of marrow stroma cells revealed that mouse BM MSCs identified as CD45-Ter119-CD31-Nestin+PDGFR+CD51+ express the CXCR4 receptor, which was confirmed by RT-PCR analysis. To investigate the role of MSC CXCR4 signaling in niche maintenance and support of HSC function, we utilized genetic mouse models, in which CXCR4 could be deleted in specific stromal cell types. Selective deletion of CXCR4 from nestin+ MSC in adult tamoxifen inducible nestin-cre CXCR4flox/flox mice resulted in reduced total MSC in BM (Control vs. Deleted: 647±128 vs. 209±51/femur, respectively, n=5, p<0.05), which was associated with a significant reduction in Lineage-Sca-1+c-Kit+ (LSK) cells (Control vs. Deleted: 18,033±439 vs. 4523±358/femur, respectively n=5, p<0.05). Selective CXCR4 deletion in nestin+ MSC also resulted in enhanced LSK cell egress to the peripheral circulation (Control vs. Deleted: 1022±106 vs. 2690±757/ml blood, respectively n=5, p<0.05), with no detectable difference in HSC cell cycle or apoptosis. However, the repopulation ability of HSC obtained from mice where CXCR4 was deleted in nestin+ MSC was reduced by >2 fold. In contrast, deletion of CXCR4 from osteoblasts using osteocalcin cre CXCR4flox/flox mice had no effect on HSC numbers in BM and blood.To investigate the role of nestin+ MSC CXCR4 signaling in BM niche reconstruction and hematopoietic recovery, we transplanted BM cells from wild-type mice into syngeneic wild-type or nestin+ MSC CXCR4 deleted recipients after lethal irradiation (950 rad) and analyzed HSC homing, niche recovery and hematopoietic reconstitution. Deletion of CXCR4 from nestin expressing MSC resulted in significantly reduced LSK cell homing at 16 hrs post transplantation (Control vs. Deleted: 8643±1371 vs. 3004±1044/ mouse, respectively, n=5, p<0.05). Robust apoptosis and senescence after total body irradiation was observed in nestin expressing MSCs lacking CXCR4 expression. At 15 days post-transplantation, chimeric mice with nestin+ MSC lacking CXCR4 expression displayed attenuated niche recovery and hematopoietic reconstitution compared to mice with wild-type stroma. In conclusion, our study suggests that CXCR4-SDF-1 signaling in nestin+ MSC is critical for the maintenance and retention of HSC in BM during homeostasis and promotes niche regeneration and hematopoietic recovery after transplantation. Furthermore, our data suggest the modulating CXCR4 signaling in the hematopoietic niche could be beneficial as a means to enhance HSC recovery following clinical hematopoietic transplantation or radiation/chemotherapy injury. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 87 (6) ◽  
pp. 556-570 ◽  
Author(s):  
Fabio Di Giacomo ◽  
Christine Granotier ◽  
Vilma Barroca ◽  
David Laurent ◽  
François D. Boussin ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2123-2129 ◽  
Author(s):  
AC Berardi ◽  
A Wang ◽  
J Abraham ◽  
DT Scadden

Basic fibroblast growth factor or fibroblast growth factor-2 (FGF) has been shown to affect myeloid cell proliferation and hypothesized to stimulate primitive hematopoietic cells. We sought to evaluate the effect of FGF on hematopoietic stem cells and to determine if FGF mediated its effects on progenitor cells directly or through the induction of other cytokines. To address the direct effects of FGF, we investigated whether FGF induced production of interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha, IL-6, granulocyte colony- stimulating factor, or granulocyte-macrophage colony-stimulating factor by two types of accessory cells, bone marrow (BM) fibroblasts and macrophages. We further evaluated whether antibodies to FGF-induced cytokines affected colony formation. To determine if FGF was capable of stimulating multipotent progenitors, we assessed the output of different colony types after stimulation of BM mononuclear cells (BMMC) or CD34+ BMMC and compared the effects of FGF with the stem cell active cytokine, kit ligand (KL). In addition, a subset of CD34+ BMMC with characteristics of hematopoietic stem cells was isolated by functional selection and their response to FGF was evaluated using proliferation, colony-forming, and single-cell polymerase chain reaction (PCR) assays. We determined that FGF had a stimulatory effect on the production of a single cytokine, IL-6, but that the effects of FGF on colony formation were not attributable to that induction. FGF was more restricted in its in vitro effects on BM progenitors than KL was, having no effect on erythroid colony formation. FGF did not stimulate stem cells and FGF receptors were not detected on stem cells as evaluated by single-cell reverse transcription PCR. In contrast, FGF receptor gene expression was detected in myeloid progenitor populations. These data support a directly mediated effect for FGF that appears to be restricted to lineage-committed myeloid progenitor cells. FGF does not appear to modulate the human hematopoietic stem cell.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Craig Dorrell ◽  
Olga I. Gan ◽  
Daniel S. Pereira ◽  
Robert G. Hawley ◽  
John E. Dick

Abstract Current procedures for the genetic manipulation of hematopoietic stem cells are relatively inefficient due, in part, to a poor understanding of the conditions for ex vivo maintenance or expansion of stem cells. We report improvements in the retroviral transduction of human stem cells based on the SCID-repopulating cell (SRC) assay and analysis of Lin− CD34+CD38−cells as a surrogate measure of stem cell function. Based on our earlier study of the conditions required for ex vivo expansion of Lin−CD34+ CD38− cells and SRC, CD34+–enriched lineage–depleted umbilical cord blood cells were cultured for 2 to 6 days on fibronectin fragment in MGIN (MSCV-EGFP-Neo) retroviral supernatant (containing 1.5% fetal bovine serum) and IL-6, SCF, Flt-3 ligand, and G-CSF. Both CD34+CD38− cells (20.8%) and CFC (26.3%) were efficiently marked. When the bone marrow of engrafted NOD/SCID mice was examined, 75% (12/16) contained multilineage (myeloid and B lymphoid) EGFP+ human cells composing as much as 59% of the graft. Half of these mice received a limiting dose of SRC, suggesting that the marked cells were derived from a single transduced SRC. Surprisingly, these culture conditions produced a large expansion (166-fold) of cells with the CD34+CD38− phenotype (n = 20). However, there was no increase in SRC numbers, indicating dissociation between the CD34+CD38− phenotype and SRC function. The underlying mechanism involved apparent downregulation of CD38 expression within a population of cultured CD34+CD38+ cells that no longer contained any SRC function. These results suggest that the relationship between stem cell function and cell surface phenotype may not be reliable for cultured cells. (Blood. 2000;95:102-110)


Sign in / Sign up

Export Citation Format

Share Document