scholarly journals Tumor Rejection by Modulation of Tumor Stromal Fibroblasts

2003 ◽  
Vol 198 (10) ◽  
pp. 1487-1493 ◽  
Author(s):  
Thomas Schüler ◽  
Sandra Körnig ◽  
Thomas Blankenstein

Interleukin (IL)-4–secreting tumors are rejected in mice, an effect that is thought to be immune mediated. However, solid tumors are embedded in a stroma that often contains tumor-promoting fibroblasts, a cell population whose function is also affected by IL-4. Here we show that IL-4–secreting tumors grew undiminished in IL-4 receptor (R)–deficient (IL-4R−/−) mice. In IL-4R+/+ mice they were long-term suppressed in the absence of T cells but complete rejection required T cells, compatible with the assumption that hematopoietic cells needed to respond to IL-4. Surprisingly, bone marrow (BM) chimeric mice revealed that IL-4R expression exclusively on non-BM–derived cells was sufficient for tumor rejection. Fibroblasts in the tumor stroma were identified as a target cell type for IL-4 because they accumulated in IL-4–secreting tumors and displayed an activated phenotype. Additionally, coinjection of IL-4R+/+ but not IL-4R−/− fibroblasts was sufficient for the rejection of IL-4–secreting tumors in IL-4R−/− mice. Our data demonstrate a novel mechanism by which IL-4 contributes to tumor rejection and show that the targeted modulation of tumor-associated fibroblasts can be sufficient for tumor rejection.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sandra S. Ring ◽  
Jovana Cupovic ◽  
Lucas Onder ◽  
Mechthild Lütge ◽  
Christian Perez-Shibayama ◽  
...  

AbstractThe tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Author(s):  
Elvira Forte ◽  
Bryant Perkins ◽  
Amalia Sintou ◽  
Harkaran S. Kalkat ◽  
Angelos Papanikolaou ◽  
...  

Background: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of HF. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8 + cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-MI myocardial impairment through presentation of self-antigen from necrotic cardiomyocytes to cytotoxic CD8 + T cells. Methods: We induced type-2 myocardial infarction (MI)-like ischemic injury in the heart by treatment with a single high dose of the beta-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a -depleted mice lacking DC cross-priming function. Results: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a -/- mice deficient in DC cross-priming are protected from long-term immune-mediated myocardial damage and decline of cardiac function, likely due to dampened activation of cytotoxic CD8 + T cells. Conclusions: Activation of cytotoxic CD8 + T cells by cross-priming DC contributes to exacerbation of post-ischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent immune-mediated worsening of post-ischemic HF.


Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3508-3519 ◽  
Author(s):  
John C. Markley ◽  
Michel Sadelain

Abstract The γc-cytokines are critical regulators of immunity and possess both overlapping and distinctive functions. However, comparative studies of their pleiotropic effects on human T cell–mediated tumor rejection are lacking. In a xenogeneic adoptive transfer model, we have compared the therapeutic potency of CD19-specific human primary T cells that constitutively express interleukin-2 (IL-2), IL-7, IL-15, or IL-21. We demonstrate that each cytokine enhanced the eradication of systemic CD19+ B-cell malignancies in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull mice with markedly different efficacies and through singularly distinct mechanisms. IL-7– and IL-21–transduced T cells were most efficacious in vivo, although their effector functions were not as enhanced as IL-2– and IL-15–transduced T cells. IL-7 best sustained in vitro T-cell accumulation in response to repeated antigenic stimulation, but did not promote long-term T-cell persistence in vivo. Both IL-15 and IL-21 overexpression supported long-term T-cell persistence in treated mice, however, the memory T cells found 100 days after adoptive transfer were phenotypically dissimilar, resembling central memory and effector memory T cells, respectively. These results support the use of γc-cytokines in cancer immunotherapy, and establish that there exists more than 1 human T-cell memory phenotype associated with long-term tumor immunity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3296-3296
Author(s):  
Raul Teruel Montoya ◽  
Xianguo Kong ◽  
Shaji Abraham ◽  
Lin Ma ◽  
Leonard C. Edelstein ◽  
...  

Abstract Abstract 3296 Genetic modification of hematopoietic stem cells (HSCs) has the potential to benefit acquired and congenital hematological disorders. Despite the use of so-called “tissue-specific” promoters to drive expression of the desired transgene, off-target (and consequent deleterious) effects have been observed. MicroRNAs (miRNAs) are important regulators of gene expression. They associate with Argonaute proteins and most typically target 3'UTRs, where complementary base-pairing results in repressed gene expression via RNA decay and translation inhibition. Most miRNAs are ubiquitously expressed, and although some are claimed to be “tissue specific,” such claims have generally not been rigorously validated. The long-term goal of this work is identifying “cell preferential” miRNA expression that could be exploited in expression vectors to minimize off-target transgene expression in HSCs. Initially, total RNA was extracted with Trizol from the megakaryocyte and T-lymphocyte cell lines, Meg-01 and Jurkat, and miRNAs were profiled by Nanostring technology (Nanostring Technologies, Denver, CO). MiR-495 was determined to be highly expressed in Meg-01 and very low in Jurkat cells. A luciferase reporter construct was generated with four canonical binding sites for miR-495 in the 3'UTR and transfected into both cell lines. Compared to control vector without miR-495 binding sites, luciferase expression showed a 50% reduction in Meg-01 cells, but no knock down in Jurkat cells. These experiments indicated that different levels of endogenous miRNA levels can regulate transgene expression through a novel design in the 3'UTR. We next turned our attention to human hematopoietic cells. We reasoned that the long-term goal of minimal off-target transgene expression in HSCs would require knowledge of miRNAs that had little or no detectable expression (“selectively reduced [SR]”) in one cell type and were highly expressed in other cell types. In this manner, the transgene expression would be dampened only in the non-target cells. As a surrogate for bone marrow progenitors and as proof of principle, we used primary cells in normal human peripheral blood. T-cells, B-cells, platelets and granulocytes were purified by density centrifugation followed by immunoselection from five healthy human donors. Flow cytometry using membrane specific markers demonstrate >97% purity of each specific cell preparation. Total RNA was extracted and miRNAs were profiled as above. First, we identified 277 miRNAs that were differentially expressed between any pair of cell types (p-value<0.05 by ANOVA). Second, we performed ranked pair-wise comparisons across all cell types to determine SR miRNAs. This analysis revealed 5 platelet SR-miRNAs, 6 B-cell SR-miRNAs, 2 T-cell SR-miRNAs and 4 granulocyte SR-miRNAs. Lastly, we considered which of these 17 SR-miRNAs would be the best single SR-miRNA within and across cell types. SR-miRNAs were normalized to let-7b, a miRNA we determined to be equivalently expressed across all cell types, and hence, an ideal normalizer. Lineage-specific SR-miRNAs were selected based on extremely low expression in only one cell type and highest fold change of expression compared to the other cell types. The best SR-miRNAs were miR-29b (SR in platelets), miR-125a-5p (SR in B-cells) and miR-146a (SR in granulocytes). The SR expression levels of these 3 miRNAs were validated by qRT-PCR. Our analysis identified no good SR-miRNAs in T-cells. On-going experiments are testing the selective effects of the SR miRNAs in lentiviral vector infection of cord blood CD34+ cells differentiated along specific lineages. In summary, we have demonstrated in hematopoietic cell lines that SR endogenous miRNAs can regulate the expression of transgenes via tandem arrangement of their target sites in the 3'UTR. Additionally, we have identified miRNAs that are specifically expressed at a very low level in one blood cell type and at high levels in other cell types. These miRNAs could potentially be utilized as new biological tools in gene therapy for hematological disorders to restrict transgene expression and avoid the negative consequences of off-target expression. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (11) ◽  
pp. 1549-1560 ◽  
Author(s):  
Sabrina Ibe ◽  
Zhihai Qin ◽  
Thomas Schüler ◽  
Susanne Preiss ◽  
Thomas Blankenstein

The stroma of solid tumors is a complex network of different cell types. We analyzed stroma cell interactions in two tumor models during cyclophosphamide (Cy)-induced tumor rejection. In growing tumors, tumor infiltrating macrophages (TIMs) produced interleukin (IL)-10. Beginning 6 h after Cy-treatment T cells in the tumor were inactivated and TIMs switched to interferon (IFN)-γ production. Both, IL-10 production before and IFN-γ production after Cy-treatment by TIMs required T cells. With the same kinetics as TIMs started to produce IFN-γ the tumor vasculature was destroyed which required IFN-γ receptor expression on host but not tumor cells. These events preceded hemorrhagic necrosis and residual tumor cell elimination by T cells. Together, T cells regulate the function of TIMs and tumor rejection can be induced by disturbing the stroma network.


mBio ◽  
2021 ◽  
Author(s):  
Kim J. Hasenkrug ◽  
Friederike Feldmann ◽  
Lara Myers ◽  
Mario L. Santiago ◽  
Kejun Guo ◽  
...  

Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2954-2954
Author(s):  
Christoph Bucher ◽  
Johanna Zhou ◽  
Heidi Mondale ◽  
Meghan Johnson ◽  
Luna Liu ◽  
...  

Abstract Regulatory T-cells impede efficient immuno-surveillance and tumor clearance. Therapeutic Treg reduction with anti-CD25Ab can lead to improved survival in murine tumor models, but due to its long half-life, anti-CD25mAb may deplete anti-tumor reactive T-cells that are generated or expanded in Treg-depleted recipients. Tregs can also be targeted using an immunoconjugate consisting of IL-2 linked to diptheria toxin (IL- 2DT), that has a shorter half-life. Clinical trials with IL-2DT have had variable results in stimulating anti-tumor immune responses in the context of large tumor burdens. To determine whether responses with IL-2DT can be achieved in AML patients with minimal residual disease after induction chemotherapy, C57BL/6 (B6) mice were injected i.v. with moderately immunogenic luciferase- and DsRed-transduced murine AML cell line (C1498) that is MHC class I+II-. IL-2DT had no effects on in vitro tumor growth. After in vivo tumor injection, cohorts were given 1ug IL-2DT on days 0, 2 and 4 and monitored for tumor burden by Xenogen® luciferase imaging and survival. Untreated mice all died by d35. Whereas mice treated with IL-2DT vs. untreated controls initially showed no difference in tumor growth, tumor burden started to decrease by day 10 in treated mice. No tumor was observed in treated mice by d28, and all mice survived long term without relapse (p&lt;0.001). The IL-2DT conferred survival advantage was observed regardless as to whether the tumor was injected i.v., s.c. or directly into the bone marrow, indicating that typical sites of AML disease were not refractory to IL2DT therapy. Long-term survivors after IL-2DT therapy survived rechallenge with a lethal AML cell dose. Consistent with these data, T-cell subset depletion experiments showed that tumor rejection was critically dependent upon CD8 T-cells and only partially dependent on CD4 T-cells. Experiments using gene knockout mice were used to determine whether cytokines implicated in anti-tumor CTL responses were essential for the efficacy of IL-2DT. These data indicate that the protective effect of IL-2DT was IL-17 independent but critically dependent on interferon gamma (p&lt;0.01). To determine effects of IL-2DT on the cellular infiltrate at the tumor site of s.c. injected mice, mice were injected with C1498 s.c. and analyzed 14 days later. The primary tumor of s.c. injected untreated mice showed an intratumoral infiltrate rich in CD4+FoxP3+ Tregs. In contrast the s.c. tumor site in IL-2DT treated mice were infiltrated predominately by CD8-positive cells. These data suggest that a short treatment with IL-2DT abrogates tumor-induced tolerance mediated by FoxP3-expressing Tregs and allows the influx of CD8 T-cells that ultimately reject the tumor via an interferon gamma dependent mechanism. In summary, the use of IL-2DT in this model of AML results in tumor clearance, long term immunity and survival.


2016 ◽  
Vol 89 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Meda Sandra Orasan ◽  
Iulia Ioana Roman ◽  
Andrei Coneac ◽  
Adriana Muresan ◽  
Remus Ioan Orasan

 Research in the field of reversal hair loss remains a challenging subject.As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles . In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety.


Virology ◽  
2006 ◽  
Vol 349 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Ping Chen ◽  
Wolfgang Hübner ◽  
Kareen Riviere ◽  
Yu-Xin Liu ◽  
Benjamin K. Chen

Sign in / Sign up

Export Citation Format

Share Document