scholarly journals Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome

2016 ◽  
Vol 213 (7) ◽  
pp. 1163-1174 ◽  
Author(s):  
Marije E.C. Meuwissen ◽  
Rachel Schot ◽  
Sofija Buta ◽  
Grétel Oudesluijs ◽  
Sigrid Tinschert ◽  
...  

Pseudo-TORCH syndrome (PTS) is characterized by microcephaly, enlarged ventricles, cerebral calcification, and, occasionally, by systemic features at birth resembling the sequelae of congenital infection but in the absence of an infectious agent. Genetic defects resulting in activation of type 1 interferon (IFN) responses have been documented to cause Aicardi-Goutières syndrome, which is a cause of PTS. Ubiquitin-specific peptidase 18 (USP18) is a key negative regulator of type I IFN signaling. In this study, we identified loss-of-function recessive mutations of USP18 in five PTS patients from two unrelated families. Ex vivo brain autopsy material demonstrated innate immune inflammation with calcification and polymicrogyria. In vitro, patient fibroblasts displayed severely enhanced IFN-induced inflammation, which was completely rescued by lentiviral transduction of USP18. These findings add USP18 deficiency to the list of genetic disorders collectively termed type I interferonopathies. Moreover, USP18 deficiency represents the first genetic disorder of PTS caused by dysregulation of the response to type I IFNs. Therapeutically, this places USP18 as a promising target not only for genetic but also acquired IFN-mediated CNS disorders.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1984
Author(s):  
Elke Pach ◽  
Jürgen Brinckmann ◽  
Matthias Rübsam ◽  
Maike Kümper ◽  
Cornelia Mauch ◽  
...  

Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14Sf−/−) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14Sf−/− mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14Sf−/− skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.



2021 ◽  
pp. 1-12
Author(s):  
Meng Wu ◽  
Ming Li ◽  
Hong-Ju Xie ◽  
Hong-Wei Liu

Silicone implant-based augmentation rhinoplasty or mammoplasty induces capsular contracture, which has been acknowledged as a process that develops an abnormal fibrotic capsule associated with the immune response to allogeneic materials. However, the signaling pathways leading to the nasal fibrosis remain poorly investigated. We aimed to explore the molecular mechanism underlying the pathogenesis of nasal capsular contracture, with a specific research interest in the signaling pathways involved in fibrotic development at the advanced stage of contracture. By examining our recently obtained RNA sequencing data and global gene expression profiling between grade II and grade IV nasal capsular tissues, we found that both the RAP1 and JAK/STAT signaling pathways were hyperactive in the contracted capsules. This was verified on quantitative real-time PCR which demonstrated upregulation of most of the representative component signatures in these pathways. Loss-of-function assays through siRNA-mediated Rap1 silencing and/or small molecule-directed inhibition of JAK/STAT pathway in ex vivo primary nasal fibroblasts caused a series of dramatic behavioral and functional changes, including decreased cell viability, increased apoptosis, reduced secretion of proinflammatory cytokines, and synthesis of type I collagen, compared to control cells, and indicating the essential role of the RAP1 and JAK/STAT signaling pathways in nasal capsular fibrosis. Our results sheds light on targeting downstream signaling pathways for the prevention and therapy of silicone implant-induced nasal capsular contracture.



2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.



2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.



2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Eun-kyung Choi ◽  
Young-Ah Seo

Abstract Objectives Hemochromatosis is a frequent genetic disorder characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell-surface iron exporter ferroportin (Fpn), are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill defined, and the impact of disease mutations on cellular Mn levels is unknown. Thus, this study aimed to define the role of Fpn in Mn regulation and determine the functional consequences of ferroportin disease mutations in cellular Mn levels. Methods Thus far, over 50 mutations in Fpn have been identified in hemochromatosis type 4/ferroportin disease. To test whether these mutations alter cellular Mn metabolism, we constructed an expression vector encoding human Fpn with a C-terminal HA epitope tag and introduced nine clinically relevant mutations by site-directed mutagenesis. Based on previously reported in vitro functional results, we selected five ferroportin disease mutations from each of the two groups: five loss-of-function (LOF) mutations (G80S, R88G, D157G, D157Y, and V162Δ) and four gain-of-function (GOF) mutations (N144H, N144T, C326S, and and S338R). Results Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn appears to play protective roles in Mn-induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with Fpn's role in controlling Mn levels as well as the stability of Fpn. Conclusions These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease. Funding Sources National Institutes of Health (NIH) to Y.A.S. (K99/R00 ES024340).



2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985680 ◽  
Author(s):  
Poliana de Araujo Oliveira ◽  
Queli Cristina Fidelis ◽  
Thayane Ferreira da Costa Fernandes ◽  
Milene Conceição de Souza ◽  
Dayane Magalhães Coutinho ◽  
...  

Ouratea species are used for the treatment of inflammation-related diseases such as rheumatism and arthritic disorders. The Ouratea genus is a rich source of flavonoids and bioflavonoids and for this reason we evaluated the effects of the biflavonoid fractions from the leaves of O. hexasperma (OHME) and O. ferruginea (OFME) in the in vivo model of complete Freund’s adjuvant (CFA)-induced arthritis and in the in vitro model of oxidative stress and cellular viability. The CFA-induced arthritis model in rats was followed by paw volume, articular incapacitation and Randall-selitto models, as well as quantification of cytokines and serum C-terminal telopeptide of type I collagen levels. OHME and OFME demonstrated antinociceptive and anti-inflammatory activities, as well as improvement in articular incapacity and reduction in levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α, and type 1 collagen, and increased cell viability. No adverse effects were observed. The results suggest that OHME and OFME can reduce inflammation and bone resorption besides their antioxidant action.



2019 ◽  
Vol 29 (2) ◽  
pp. 274-285 ◽  
Author(s):  
Roberto Costa ◽  
Stefania Bellesso ◽  
Susanna Lualdi ◽  
Rosa Manzoli ◽  
Valeria Pistorio ◽  
...  

Abstract Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3′ untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/β-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.



Antibodies ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 55
Author(s):  
Jitesh Chauhan ◽  
Alex J. McCraw ◽  
Mano Nakamura ◽  
Gabriel Osborn ◽  
Heng Sheng Sow ◽  
...  

Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.



2011 ◽  
Vol 129 (2) ◽  
pp. 110-112 ◽  
Author(s):  
Luiz Guilherme Darrigo Júnior ◽  
Elvis Terci Valera ◽  
André de Aboim Machado ◽  
Antonio Carlos dos Santos ◽  
Carlos Alberto Scrideli ◽  
...  

CONTEXT: Neurofibromatosis type 1 (NF-1) is the most prevalent autosomal dominant genetic disorder among humans. Moyamoya disease is a cerebral vasculopathy that is only rarely observed in association with NF-1, particularly in the pediatric age range. The present study reports an occurrence of this association in an infant. CASE REPORT: An eight-month-old female presented convulsive seizures with clonic movements. The patient suffered an ischemic stroke with hemiparesis. Magnetic resonance imaging revealed radiological findings compatible with moyamoya disease. The diagnosis of NF-1 was made at the age of 20 months. CONCLUSION: Despite the rarity of this association in childhood, children with focal neurological symptoms and a diagnosis of NF-1 deserve to be investigated for moyamoya syndrome.



2006 ◽  
Vol 101 (3) ◽  
pp. 898-905 ◽  
Author(s):  
Christopher L. Mendias ◽  
James E. Marcin ◽  
Daniel R. Calerdon ◽  
John A. Faulkner

Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (Po), but decrease the specific Po(sPo) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type ( MSTN+/+), heterozygous-null ( MSTN+/−), and homozygous-null ( MSTN−/−) adult male mice were determined. For EDL muscles, the Poof both MSTN+/−and MSTN−/−mice were greater than the Poof MSTN+/+mice. For soleus muscles, the Poof MSTN−/−mice was greater than that of MSTN+/+mice. The sPoof EDL muscles of MSTN−/−mice was less than that of MSTN+/+mice. For soleus muscles, however, no difference in sPowas observed. Following two lengthening contractions, EDL muscles from MSTN−/−mice had a greater force deficit than that of MSTN+/+or MSTN+/−mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.



Sign in / Sign up

Export Citation Format

Share Document