A transcriptional and post-transcriptional dysregulation of Dishevelled 1 and 2 underlies the Wnt signaling impairment in type I Gaucher disease experimental models

2019 ◽  
Vol 29 (2) ◽  
pp. 274-285 ◽  
Author(s):  
Roberto Costa ◽  
Stefania Bellesso ◽  
Susanna Lualdi ◽  
Rosa Manzoli ◽  
Valeria Pistorio ◽  
...  

Abstract Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3′ untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/β-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.

2001 ◽  
Vol 75 (6) ◽  
pp. 2857-2865 ◽  
Author(s):  
Michele Brunori ◽  
Maddalena Malerba ◽  
Haruhiko Kashiwazaki ◽  
Richard Iggo

ABSTRACT Despite important advances in understanding the molecular basis of cancer, few treatments have been devised which rationally target known causal oncogenic defects. Selectively replicating viruses have a major advantage over nonreplicating viruses to target these defects because the therapeutic effect of the injected virus is augmented by virus produced within the tumor. To permit rational targeting of colon tumors, we have developed replicating adenoviruses that express the viral E1B and E2 genes from promoters controlled by the Tcf4 transcription factor. Tcf4 is constitutively activated by mutations in the adenomatous polyposis coli and β-catenin genes in virtually all colon tumors and is constitutively repressed by Groucho and CtBP in normal tissue. The Tcf-E2 and Tcf-E1B promoters are active in many, but not all, cell lines with activation of the wnt pathway. Viruses with Tcf regulation of E2 expression replicate normally in SW480 colon cancer cells but show a 50- to 100-fold decrease in replication in H1299 lung cancer cells and WI38 normal fibroblasts. Activation of wnt signaling by transduction of a stable β-catenin mutant into normal fibroblasts renders the cells permissive for virus replication. Insertion of Tcf4 sites in the E1B promoter has only small effects on replication in vitro but significantly reduces the inflammatory response in a rodent lung model in vivo. Replicating adenoviruses with Tcf regulation of both E1B and E2 transcription are potentially useful for the treatment of liver metastases from colorectal tumors, but additional changes will be required to produce a virus that can be used to treat all colon tumors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiqun Su ◽  
Jie Wen ◽  
Junrong Zhu ◽  
Zhiwei Xie ◽  
Chang Liu ◽  
...  

Abstract Background Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. Methods Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. Results Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. Conclusions In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3266-3266
Author(s):  
Yasuaki Shida ◽  
Christine Brown ◽  
Jeff Mewburn ◽  
Kate Sponagle ◽  
Ozge Danisment ◽  
...  

Abstract Abstract 3266 Von Willebrand Factor (VWF) is a large multimeric glycoprotein that mediates platelet adhesion to the damaged blood vessel wall and subsequent platelet aggregation at the site of injury. Rare mutations in the VWF A3 domain, that disrupt collagen binding, have been found in patients with a mild bleeding phenotype. However, the analysis of these aberrant VWF-collagen interactions has been relatively limited. Thus, in this study, we have developed mouse models of collagen binding mutants and analyzed the function of the A3 and A1 domains using comprehensive in vitro and in vivo approaches. All of the collagen binding variant AAs are conserved in mice. 6 loss-of-function (S1731T, W1745C, S1783A, H1786D, A1 deletion, A3 deletion) and 1 gain-of-function (L1757A) variant was generated in the context of the mouse VWF cDNA. The 4 loss-of-function missense mutants have all been described in patients with mild bleeding phenotypes. The recombinant mouse VWFs (rmVWF) were synthesized in HEK293T cells and analyzed for type I and III collagen binding in both a static assay (CBA) and a flow-based assay at 2,500s−1 in which VWF is bound to collagen on a surface, and labeled platelet adhesion is quantified. The multimer profile of all the rmVWFs was normal. The expression level of the rmVWF derived from HEK293T cells was quantified. W1745C and the A3 deletion showed significantly lower levels of expression and the A1 deletion mutant showed strong intracellular retention. In the static collagen binding assay, S1731T showed almost normal binding to collagen type I and a 50% reduction in binding to collagen type III. The other 3 missense variants, W1745C, S1783A and H1786D, showed reduced binding to both collagens I and III, and the A3 deletion mutant showed absent binding. In the in vitro flow assay, the sensitivity to detect defects in collagen binding was superior to the static assay, although the patterns of binding defects were similar. W1745C showed similar low levels of platelet adhesion to both types of collagen, while S1783A and H1786D showed a lack of platelet binding on the collagen III surface similar to the A3 deletion mutant, and a reduced binding to collagen type I similar to W1745C. The gain-of-function mutant showed consistent enhanced collagen binding and platelet adhesion in the static and flow assays, respectively. In vivo studies delivered the mVWF cDNAs with a strong liver specific promoter by hydrodynamic injection. At 7 days post-delivery, the VWF:Ag levels in the WT and collagen binding variant mice were similar, apart from the W1745C mutant, that showed 14.6% levels compared to WT. Platelet counts and multimer patterns were normal with the collagen binding variants. In vivo intravital microscopy studies were performed using the cremaster arteriolar model when VWF levels were in a physiological range. Thrombosis was induced by 10%FeCl3 applied for 3 mins. Platelets were labeled in vivo by Rhodamine 6G and the thrombus development was analyzed by spinning disc confocal microscopy. Loss-of-function mutants showed transient platelet adhesion at the site of injury, however the adhesion was unstable and vessel occlusion was not observed. Using three complementary experimental systems we have been able to confirm the collagen binding defects in this group of variant VWFs. There is a differential sensitivity to the two forms of collagen and of the three experimental systems. The A3 deletion mutant consistently resulted in the most severe phenotype while the missense mutants showed variable degrees of functional deficit. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 20 ◽  
pp. 153303382110412
Author(s):  
Jiancong Hu ◽  
Zihan Wang ◽  
Junxiong Chen ◽  
Zhaoliang Yu ◽  
Jingdan Zhang ◽  
...  

Inhibitor of β-catenin and T-cell factor (ICAT) was first found as a polypeptide that blocks β-catenin–TCF interaction. Abundant evidence has shown that ICAT has different functions in diverse cancers’ progression. Nevertheless, the roles it plays in colorectal cancer (CRC) have not been described. Here, we documented that ICAT expression was higher in CRC tissue than in the adjacent normal tissue and that prognosis was better in high-ICAT expression patients. The overexpression of ICAT inhibited CRC cell proliferation both in vitro and in vivo. Wnt pathway transcriptional activity was suppressed in the CRC cells with ICAT overexpression, where the CCND1 and MYC expression, which occurs downstream of the Wnt signaling pathway, was inhibited. Co-immunoprecipitation experiments showed that ICAT bound with β-catenin in stable overexpression cell lines; immunofluorescence showed the co-localization of ICAT and β-catenin in the cytoplasm. Overall, our study reveals that ICAT inhibits CRC cell proliferation by binding to cytoplasm-located β-catenin, and prevents its translocation, which results in Wnt signaling pathway inactivation. It may provide a scientific foundation for focusing on ICAT in treatments for CRC.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15185-e15185 ◽  
Author(s):  
Carine Bossard ◽  
Kevin Chiu ◽  
Heekyung Chung ◽  
John Duc Nguyen ◽  
Emily Creger ◽  
...  

e15185 Background: Aberrant activation of Wnt signaling contributing to tumorigenesis is most commonly associated with CRC (90% harbor Wnt pathway mutations). SM08502, a novel, oral Wnt signaling pathway inhibitor, was evaluated in preclinical CRC models. Methods: In vitro Wnt signaling: assessed using TOPflash β-catenin/TCF reporter assay in SW480 human CRC cells. In vitro Wnt pathway gene expression: measured by qRT-PCR in SW480 and Wnt3a-stimulated cells (HEK-293T, IEC-6), and with the Nanostring Wnt pathway array (180 genes) across a panel of 16 CRC cell lines. In vitro cell proliferation: 17 CRC cell lines were used to test cell viability following treatment. In vivo antitumor activity: Oral SM08502 was tested in CRC mouse xenografts (SW480, HCT 116) and a PDX model over 20-21 days (QD, QOD). 24-hr pharmacodynamic (PD) analysis of Wnt pathway gene expression was done in SW480 tumor explants from mice following one 25 mg/kg dose. Results: SM08502 inhibited Wnt pathway signaling (EC50 = 46 nM) in SW480 cells. Wnt pathway gene expression was inhibited by SM08502 (0.3-3 µM) in Wnt3a-stimulated cells ( AXIN2, LEF1) and SW480 ( AXIN2, CTNNB1, LEF1, MYC, TCF7, TCF7L2) at 24 hrs ( P < .05 vs. vehicle) . Corresponding effects on protein expression were confirmed for all genes except CTNNB1, suggesting SM08502 acted independently of β-catenin. Nanostring array screening identified inhibition of LRP5, DVL2, BTRC, and ERBB2 by SM08502. Cell proliferation was inhibited in all 17 lines (avg. EC50 = 177 nM). In vivo, SM08502 was well tolerated and induced dose-dependent antitumor effects in xenografts and PDX models. Tumor growth inhibition for 25 mg/kg QD (max dose) was 83%, 56%, and 70% in SW480, HCT 116, and PDX, respectively. PD analysis showed significant inhibition ( P< .05 vs. vehicle) of TCF7, MYC, LRP5, DVL2, and BTRC expression 8 hrs post treatment. Conclusions: In preclinical CRC models, SM08502 was a potent inhibitor of Wnt pathway signaling and gene expression. It showed strong antitumor activity in human tumor models with activating Wnt pathway mutations. The safety, tolerability, and PK of SM08502 are being evaluated in an ongoing phase 1 study (NCT03355066).


2018 ◽  
Vol 215 (10) ◽  
pp. 2567-2585 ◽  
Author(s):  
Nicholas Hernandez ◽  
Isabelle Melki ◽  
Huie Jing ◽  
Tanwir Habib ◽  
Susie S.Y. Huang ◽  
...  

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient’s cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient’s cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.


2018 ◽  
Author(s):  
Maddalena Adorno ◽  
Benedetta Nicolis di Robilant ◽  
Shaheen Sikandar ◽  
Veronica Haro Acosta ◽  
Jane Antony ◽  
...  

ABSTRACTRegulation of the Wnt pathway in stem cells and primary tissues is still poorly understood. Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self-renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down’s Syndrome (DS), triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like DS, aging or degenerative diseases, where the Wnt pathway is hampered.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 648-648
Author(s):  
Mala Mani ◽  
Jui Dutta ◽  
Yunyu Zhang ◽  
Daniel E Carrasco ◽  
Yiming Zhou ◽  
...  

Abstract Wnt signaling plays an important role in tissue development and maintenance during embryogenesis, cell differentiation, and stem cell growth. Several components of the Wnt signaling cascade have been shown to function as either tumor suppressor proteins or as oncogenes in multiple human cancers, underscoring the relevance of this pathway in oncogenesis. Deregulation of the canonical Wnt/b-catenin pathway has been implicated in numerous human epithelial malignancies as well as hematologic malignancies including multiple myeloma (MM), generating immense interest in these molecules as targets for cancer therapy. Activation of Wnt/b-catenin in cancer has been associated with mutations that enable b-catenin to escape degradation by the proteasome, thereby allowing its accumulation in the nucleus where it functions as a transcriptional regulator in conjunction with coactivators by constitutively activating target genes such as c-Myc and Cyclin D1. To date, however, no mutations in Wnt pathway have been documented in MM, suggesting that mechanisms other than gene mutation may contribute to Wnt pathway deregulation. BCL9, a key component of the Wnt pathway, is required for b-catenin transcriptional activity and resides on chromosome 1q21, a region frequently involved in secondary chromosomal aberrations associated with MM tumor progression. Here we provide evidence that dysregulation of BCL9 expression is a novel oncogenic mechanism of Wnt pathway activation in MM. Using in vitro and in vivo functional analyses, we demonstrate that BCL9 is a bonafide oncogene that is aberrantly expressed in MM and associated with survival. Using the TCF- specific luciferase reporter, we show that enforced expression of BCL9 in MM cells enhanced b-catenin mediated transcription by >12 fold, suggesting a possible role of BCL9 overexpression in the pathogenesis of MM. BCL9 enhanced proliferation (1.5 fold, P<0.02), migration (3.5 fold, P<0.0001) and the metastatic potential of MM cells. We also showed that BCL9 plays an important role in tumor progression by regulating Cyclin D1 and c-Myc mediated cell proliferation, CD44 mediated tumor metastasis, as well as VEGF mediated host angiogenesis. Importantly, BCL9 knockdown significantly increased the survival in a xenograft mouse model of human MM (P=0.001), associated with decreased tumor burden and host angiogenesis. In summary, we have demonstrated that BCL9 is a novel and potent oncogene of the Wnt pathway in MM, playing fundamental roles in tumor progression by regulating proliferation, migration, invasion, angiogenesis and the metastatic potential of tumor cells. The pleiotropic roles of BCL9 and its aberrant expression highlight its importance as an attractive and novel therapeutic target in the treatment of MM.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


Sign in / Sign up

Export Citation Format

Share Document