scholarly journals Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation

2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Andrea-Hermina Györfi ◽  
Alexandru-Emil Matei ◽  
Maximilian Fuchs ◽  
Chunguang Liang ◽  
Aleix Rius Rigau ◽  
...  

Transforming growth factor-β (TGFβ) is a key mediator of fibroblast activation in fibrotic diseases, including systemic sclerosis. Here we show that Engrailed 1 (EN1) is reexpressed in multiple fibroblast subpopulations in the skin of SSc patients. We characterize EN1 as a molecular amplifier of TGFβ signaling in myofibroblast differentiation: TGFβ induces EN1 expression in a SMAD3-dependent manner, and in turn, EN1 mediates the profibrotic effects of TGFβ. RNA sequencing demonstrates that EN1 induces a profibrotic gene expression profile functionally related to cytoskeleton organization and ROCK activation. EN1 regulates gene expression by modulating the activity of SP1 and other SP transcription factors, as confirmed by ChIP-seq experiments for EN1 and SP1. Functional experiments confirm the coordinating role of EN1 on ROCK activity and the reorganization of cytoskeleton during myofibroblast differentiation, in both standard fibroblast culture systems and in vitro skin models. Consistently, mice with fibroblast-specific knockout of En1 demonstrate impaired fibroblast-to-myofibroblast transition and are partially protected from experimental skin fibrosis.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Subhadip Choudhuri ◽  
Nisha Jain Garg

ABSTRACT Chagas disease (CD), caused by Trypanosoma cruzi, is a degenerative heart condition. In the present study, we investigated the role of poly [ADP-ribose] polymerase 1/activator protein 1 (PARP1/AP-1) in upregulation of profibrotic macrophages (Mϕ) and subsequent development of cardiac fibrosis in CD. We used in vitro and in vivo models of T. cruzi infection and chemical and genetic inhibition of Parp1 to examine the molecular mechanisms by which Mϕ might augment profibrotic events in CD. Cultured (RAW 264.7 and THP-1) Mϕ infected with T. cruzi and primary cardiac and splenic Mϕ of chronically infected mice exhibited a significant increase in the expression, activity, and release of metalloproteinases (MMP2, MMP9, and MMP12) and the cytokine transforming growth factor β (TGF-β). Mϕ release of MMPs and TGF-β signaled the cardiac fibroblast to myofibroblast differentiation, as evidenced by a shift from S100A4 to alpha smooth muscle actin (α-SMA) expression. Incubation of infected Mϕ with MMP2 and MMP9 inhibitors resulted in 60 to 74% decline in TGF-β release, and MMP9 and PARP1 inhibitors resulted in 57 to 70% decline in Mϕ TGF-β-driven cardiac fibroblast differentiation. Likewise, histological studies showed a 12- to 16-fold increase in myocardial expression of CD68 (Mϕ marker) and its colocalization with MMP9/TGF-β, galectin-3, and vimentin in wild-type mice with CD. In comparison, chronically infected Parp1−/− mice exhibited a >50% decline in myocardial levels of Mϕ and associated fibrosis markers. Further study showed that PARP1 synergized with c-Fos and JunB AP-1 family members for transcriptional activation of profibrotic response after T. cruzi infection. We conclude that PARP1 inhibition offers a potential therapy for controlling the T. cruzi-driven fibroblast differentiation in CD through modulation of the Mϕ signaling of the AP-1–MMP9–TGF-β pathway. IMPORTANCE Cardiomyopathy is the most important clinical manifestation of T. cruzi-driven CD. Recent studies have suggested the detrimental role of the matrix metalloproteinases MMP2 and MMP9 in extracellular matrix (ECM) degradation during cardiac remodeling in T. cruzi infection. Peripheral TGF-β levels are increased in clinically symptomatic CD patients over those in clinically asymptomatic seropositive individuals. We provide the first evidence that during T. cruzi infection, Mϕ release of MMP2 and MMP9 plays an active role in activation of TGF-β signaling of ECM remodeling and cardiac fibroblast-to-myofibroblast differentiation. We also determined that PARP1 signals c-Fos- and JunB-mediated AP-1 transcriptional activation of profibrotic gene expression and demonstrated the significance of PARP1 inhibition in controlling chronic fibrosis in Chagas disease. Our study provides a promising therapeutic approach for controlling T. cruzi-driven fibroblast differentiation in CD by PARP1 inhibitors through modulation of the Mϕ signaling of the AP-1–MMP9–TGF-β pathway.


2007 ◽  
Vol 404 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Ivan Alfano ◽  
Parvez Vora ◽  
Rosemary S. Mummery ◽  
Barbara Mulloy ◽  
Christopher C. Rider

GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor β domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRα1 (GDNF family receptor α1), and heparin-bound GDNF is able to bind GFRα1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRα1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF–GFRα1 interaction, and the extracellular domain of GFRα1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF–GFRα1 engagement.


2000 ◽  
Vol 68 (4) ◽  
pp. 2077-2081 ◽  
Author(s):  
Belinda S. Hall ◽  
Miercio A. Pereira

ABSTRACT Expression of functional transforming growth factor β (TGF-β) receptors (TβR) is required for the invasion of mammalian cells by the protozoan parasite Trypanosoma cruzi. However, the precise role of this host cell signaling complex in T. cruzi infection is unknown. To investigate the role of the TGF-β signaling pathway, infection levels were studied in the mink lung epithelial cell lines JD1, JM2, and JM3. These cells express inducible mutant TβR1 proteins that cannot induce growth arrest in response to TGF-β but still transmit the signal for TGF-β-dependent gene expression. In the absence of mutant receptor expression, trypomastigotes invaded the cells at a low level. Induction of the mutant receptors caused an increase in infection in all three cell lines, showing that the requirement for TGF-β signaling at invasion can be divorced from TGF-β-induced growth arrest. TGF-β pretreatment of mink lung cells expressing wild-type TβR1 caused a marked enhancement of infection, but no enhancement was seen in JD1, JM2, and JM3 cells, showing that the ability of TGF-β to stimulate infection is associated with growth arrest. Likewise, expression of SMAD7 or SMAD2SA, inhibitors of TGF-β signaling, did not block infection by T. cruzi but did block the enhancement of infection by TGF-β. Taken together, these results show that there is a dual role for TGF-β signaling in T. cruzi infection. The initial invasion of the host cell is independent of both TGF-β-dependent gene expression and growth arrest, but TGF-β stimulation of infection requires a fully functional TGF-β signaling pathway.


2007 ◽  
Vol 204 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Göran Karlsson ◽  
Ulrika Blank ◽  
Jennifer L. Moody ◽  
Mats Ehinger ◽  
Sofie Singbrant ◽  
...  

Members of the transforming growth factor β (TGF-β) superfamily of growth factors have been shown to regulate the in vitro proliferation and maintenance of hematopoietic stem cells (HSCs). Working at a common level of convergence for all TGF-β superfamily signals, Smad4 is key in orchestrating these effects. The role of Smad4 in HSC function has remained elusive because of the early embryonic lethality of the conventional knockout. We clarify its role by using an inducible model of Smad4 deletion coupled with transplantation experiments. Remarkably, systemic induction of Smad4 deletion through activation of MxCre was incompatible with survival 4 wk after induction because of anemia and histopathological changes in the colonic mucosa. Isolation of Smad4 deletion to the hematopoietic system via several transplantation approaches demonstrated a role for Smad4 in the maintenance of HSC self-renewal and reconstituting capacity, leaving homing potential, viability, and differentiation intact. Furthermore, the observed down-regulation of notch1 and c-myc in Smad4−/− primitive cells places Smad4 within a network of genes involved in the regulation HSC renewal.


2014 ◽  
Vol 74 (7) ◽  
pp. 1467-1473 ◽  
Author(s):  
Yury Chaly ◽  
Harry C Blair ◽  
Sonja M Smith ◽  
Daniel S Bushnell ◽  
Anthony D Marinov ◽  
...  

ObjectivesChondrocytes, the only cells in the articular cartilage, play a pivotal role in osteoarthritis (OA) because they are responsible for maintenance of the extracellular matrix (ECM). Follistatin-like protein 1 (FSTL1) is a secreted protein found in mesenchymal stem cells (MSCs) and cartilage but whose function is unclear. FSTL1 has been shown to modify cell growth and survival. In this work, we sought to determine whether FSTL1 could regulate chondrogenesis and chondrogenic differentiation of MSCs.MethodsTo study the role of FSTL1 in chondrogenesis, we used FSTL1 knockout (KO) mice generated in our laboratory. Proliferative capacity of MSCs, obtained from skulls of E18.5 embryos, was analysed by flow cytometry. Chondrogenic differentiation of MSCs was carried out in a pellet culture system. Gene expression differences were assessed by microarray analysis and real-time PCR. Phosphorylation of Smad3, p38 MAPK and Akt was analysed by western blotting.ResultsThe homozygous FSTL1 KO embryos showed extensive skeletal defects and decreased cellularity in the vertebral cartilage. Cell proliferation of FSTL1-deficient MSCs was reduced. Gene expression analysis in FSTL1 KO MSCs revealed dysregulation of multiple genes important for chondrogenesis. Production of ECM proteoglycans and collagen II expression were decreased in FSTL1-deficient MSCs differentiated into chondrocytes. Transforming growth factor β signalling in FSTL1 KO cells was significantly suppressed.ConclusionsFSTL1 is a potent regulator of chondrocyte proliferation, differentiation and expression of ECM molecules. Our findings may lead to the development of novel strategies for cartilage repair and provide new disease-modifying treatments for OA.


2016 ◽  
Vol 201 (2) ◽  
pp. 88-96 ◽  
Author(s):  
Emilio Satoshi Hara ◽  
Mitsuaki Ono ◽  
Yuya Yoshioka ◽  
Junji Ueda ◽  
Yuri Hazehara ◽  
...  

Growth factors are crucial regulators of cell differentiation towards tissue and organ development. Insulin and transforming growth factor-β (TGF-β) have been used as the major factors for chondrogenesis in vitro, by activating the AKT and Smad signaling pathways. Previous reports demonstrated that AKT and Smad3 have a direct interaction that results in the inhibition of TGF-β-mediated cellular responses. However, the result of this interaction between AKT and Smad3 during the chondrogenesis of human bone marrow-derived stem/progenitor cells (hBMSCs) is unknown. In this study, we performed functional analyses by inducing hBMSCs into chondrogenesis with insulin, TGF-β3 or in combination, and found that TGF-β3, when applied concomitantly with insulin, significantly decreases an insulin-induced increase in mRNA levels of the master regulator of chondrogenesis, SOX9, as well as the regulators of the 2 major chondrocyte markers, ACAN and COL2A1. Similarly, the insulin/TGF-β3-treated group presented a significant decrease in the deposition of cartilage matrix as detected by safranin O staining of histological sections of hBMSC micromass cultures when compared to the group stimulated with insulin alone. Intracellular analysis revealed that insulin-induced activation of AKT suppressed Smad3 activation in a dose-dependent manner. Accordingly, insulin/TGF-β3 significantly decreased the TGF-β3-induced increase in mRNA levels of the direct downstream factor of TGF-β/Smad3, CCN2/CGTF, compared to the group stimulated with TGF-β3 alone. On the other hand, insulin/TGF-β3 stimulation did not suppress insulin-induced expression of the downstream targets TSC2 and DDIT4/REDD1. In summary, insulin and TGF-β3 have antagonistic effects when applied concomitantly, with a minimal number of factors. The application of an insulin/TGF-β3 combination without further supplementation should be used with caution in the chondrogenic differentiation of hBMSCs.


2011 ◽  
Vol 208 (2) ◽  
pp. 217-225 ◽  
Author(s):  
Saskia C.A. de Jager ◽  
Beatriz Bermúdez ◽  
Ilze Bot ◽  
Rory R. Koenen ◽  
Martine Bot ◽  
...  

Growth differentiation factor (GDF) 15 is a member of the transforming growth factor β (TGF-β) superfamily, which operates in acute phase responses through a currently unknown receptor. Elevated GDF-15 serum levels were recently identified as a risk factor for acute coronary syndromes. We show that GDF-15 expression is up-regulated as disease progresses in murine atherosclerosis and primarily colocalizes with plaque macrophages. Hematopoietic GDF-15 deficiency in low density lipoprotein receptor−/− mice led to impaired initial lesion formation and increased collagen in later lesions. Although lesion burden in GDF-15−/− chimeras was unaltered, plaques had reduced macrophage infiltrates and decreased necrotic core formation, all features of improved plaque stability. In vitro studies pointed to a TGFβRII-dependent regulatory role of GDF-15 in cell death regulation. Importantly, GDF-15−/− macrophages displayed reduced CCR2 expression, whereas GDF-15 promoted macrophage chemotaxis in a strictly CCR2- and TGFβRII-dependent manner, a phenomenon which was not observed in G protein–coupled receptor kinase 2+/− macrophages. In conclusion, GDF-15 deletion has a beneficial effect both in early and later atherosclerosis by inhibition of CCR2-mediated chemotaxis and by modulating cell death. Our study is the first to identify GDF-15 as an acute phase modifier of CCR2/TGFβRII-dependent inflammatory responses to vascular injury.


2020 ◽  
Vol 11 ◽  
Author(s):  
Liang Chang ◽  
Qi Wang ◽  
Jiannan Ju ◽  
Yue Li ◽  
Qiao Cai ◽  
...  

Diabetic nephropathy (DN) represents one of the most devastating complications for patients with diabetes. The anti-diabetic activities of Magnoflorine (MF) were reported, with underlying mechanism unknown. Lysine-specific demethylase 3A (KDM3A) was identified in the renal injuries. In the current study, we investigated the functional role of MF in DN progression with the involvement of KDM3A. We reported that in the animal model of DN induced by streptozotocin (STZ) injection, MF attenuated inflammatory response and fibrosis in the kidneys. In cultured mesangial cells, MF similarly ameliorated abnormal proliferation and lowered the expression of inflammation- and fibrosis-related factors stimulated by high glucose (HG) treatment. Upon MF treatment, there was a decline in KDM3A-positive cells in renal tissues of rats, accompanying an augment in KDM3A ubiquitination. KDM3A upregulation in vitro by a proteasome inhibitor MG132 comparably dampened the inhibitory role of MF in inflammatory response and fibrosis. Further analyses revealed that MF increased transforming growth factor β-induced factor 1 (TGIF1) transcriptional activity by promoting ubiquitination and degradation of KDM3A, thus inhibiting the activation of TGF-β1/Smad2/3 signaling pathway. TGIF1 silencing weakened the repressive role of MF in mesangial cells as well. In conclusion, MF contributes to TGIF1 transcription via an epigenetic mechanism.


2000 ◽  
Vol 15 (1) ◽  
pp. 68-81 ◽  
Author(s):  
Sarah L. Dallas ◽  
Douglas R. Keene ◽  
Scott P. Bruder ◽  
Juha Saharinen ◽  
Lynn Y. Sakai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document