A New way to Estimate the Mean Mass Density Associated with Galaxies

1977 ◽  
Vol 214 ◽  
pp. L1 ◽  
Author(s):  
M. Seldner ◽  
P. J. E. Peebles
Keyword(s):  
2019 ◽  
Vol 489 (1) ◽  
pp. 459-469 ◽  
Author(s):  
Tereasa G Brainerd ◽  
Masaya Yamamoto

ABSTRACT We investigate the locations of satellite galaxies in the z = 0 redshift slice of the hydrodynamical Illustris-1 simulation. As expected from previous work, the satellites are distributed anisotropically in the plane of the sky, with a preference for being located near the major axes of their hosts. Due to misalignment of mass and light within the hosts, the degree of anisotropy is considerably less when satellite locations are measured with respect to the hosts’ stellar surface mass density than when they are measured with respect to the hosts’ dark matter surface mass density. When measured with respect to the hosts’ dark matter surface mass density, the mean satellite location depends strongly on host stellar mass and luminosity, with the satellites of the faintest, least massive hosts showing the greatest anisotropy. When measured with respect to the hosts’ stellar surface mass density, the mean satellite location is essentially independent of host stellar mass and luminosity. In addition, the satellite locations are largely insensitive to the amount of stellar mass used to define the hosts’ stellar surface mass density, as long as at least 50–70 per cent of the hosts’ total stellar mass is used. The satellite locations are dependent upon the stellar masses of the satellites, with the most massive satellites having the most anisotropic distributions.


2019 ◽  
Vol 862 ◽  
pp. 348-363 ◽  
Author(s):  
Varghese Mathai ◽  
Laura A. W. M. Loeffen ◽  
Timothy T. K. Chan ◽  
Sander Wildeman

The humble pendulum is often invoked as the archetype of a simple, gravity driven, oscillator. Under ideal circumstances, the oscillation frequency of the pendulum is independent of its mass and swing amplitude. However, in most real-world situations, the dynamics of pendulums is not quite so simple, particularly with additional interactions between the pendulum and a surrounding fluid. Here we extend the realm of pendulum studies to include large amplitude oscillations of heavy and buoyant pendulums in a fluid. We performed experiments with massive and hollow cylindrical pendulums in water, and constructed a simple model that takes the buoyancy, added mass, fluid (nonlinear) drag and bearing friction into account. To first order, the model predicts the oscillation frequencies, peak decelerations and damping rate well. An interesting effect of the nonlinear drag captured well by the model is that, for heavy pendulums, the damping time shows a non-monotonic dependence on pendulum mass, reaching a minimum when the pendulum mass density is nearly twice that of the fluid. Small deviations from the model’s predictions are seen, particularly in the second and subsequent maxima of oscillations. Using time-resolved particle image velocimetry (TR-PIV), we reveal that these deviations likely arise due to the disturbed flow created by the pendulum at earlier times. The mean wake velocity obtained from PIV is used to model an extra drag term due to incoming wake flow. The revised model significantly improves the predictions for the second and subsequent oscillations.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
Fabio Luiz Albarici ◽  
Ismael Foroughi ◽  
Gabriel do Nascimento Guimarães ◽  
Marcelo Santos ◽  
Jorge Trabanco

Abstract The physical heights definition of heights, proposed by Helmert in 1890 is one of the commonly used heights systems in practice. In Helmert’s definition, the mean value of gravity along plumbline is computed by simplifying the topography with a Bouguer shell containing masses with mean density value. Although this approximation might be accurate enough many purposes, a more rigorous definition can be determined by considering the effects of terrain, topographic mass density variation, and masses contained in the geoid the mean gravity value along the plumbline. The purpose of this paper is to compute the corrections for the Helmert’s definition of the orthometric heights to obtain the rigorous orthometric heights in the state of São Paulo and adjacent states and to evaluate these corrections. The heights system used in Brazil (until July 2018) and some South American countries is normal-orthometric heights, therefore the corrections needs to be applied accordingly. Our numerical results show that there are significant differences between the normal-orthometric and rigorous orthometric heights, with maximum values of ~ 0.4 m, minimum of ~ -0.8 m and mean value of ~ -0.32 m. There are larger differences between normal-orthometric and normal height than the ones between normal and rigorous definition of orthometric heights.


2014 ◽  
Vol 10 (S309) ◽  
pp. 93-98
Author(s):  
R. Cid Fernandes ◽  
E. A. D. Lacerda ◽  
R. M. González Delgado ◽  
N. Vale Asari ◽  
R. García-Benito ◽  
...  

AbstractMethods to recover the fossil record of galaxy evolution encoded in their optical spectra have been instrumental in processing the avalanche of data from mega-surveys along the last decade, effectively transforming observed spectra onto a long and rich list of physical properties: from stellar masses and mean ages to full star formation histories. This promoted progress in our understanding of galaxies as a whole. Yet, the lack of spatial resolution introduces undesirable aperture effects, and hampers advances on the internal physics of galaxies. This is now changing with 3D surveys. The mapping of stellar populations in data-cubes allows us to figure what comes from where, unscrambling information previously available only in integrated form. This contribution uses our starlight-based analysis of 300 CALIFA galaxies to illustrate the power of spectral synthesis applied to data-cubes. The selected results highlighted here include: (a) The evolution of the mass-metallicity and mass-density-metallicity relations, as traced by the mean stellar metallicity. (b) A comparison of star formation rates obtained from Hα to those derived from full spectral fits. (c) The relation between star formation rate and dust optical depth within galaxies, which turns out to mimic the Schmidt-Kennicutt law. (d) PCA tomography experiments.


2012 ◽  
Vol 518-523 ◽  
pp. 5316-5319
Author(s):  
Xin Guo Yang

We studied a ramet population of switchgrass, caespitose in appearance, and proved the absence of density-dependent mortality. We present a deviation of mass-density allometry based on spatially explicit densities along the vertical space of the population. The number of ramets in the mean-ramet-height space explains the variation in the average weight of whole ramets (M) more accurately, with an asymptote towards critical self-thinning trajectory for such a mass-density relationship. With the development of size heterogeneity, a ‘vertical packing’ process appears in the population. We define the process as a similar ‘self-thinning’ trajectory, through the initial crowding of ramets in the mean-ramet-height space and continued transferring into the upper space and the lower space. The process presents a possibly competitive mechanism of self-thinning, local-competition-driving size deviation and vertical space packing. Here, log10 (M) = 2.91 - 1.25 log10 (NL). Local crowding degree (NL) is the number of ramets per unit area (m2) in the mean-ramet-height space class. Similar ‘self-thinning’ occurs in the ramet population, but it just indicates how those ramets escape out of the mean-ramet-height space class, and therefore how the mean weight of whole ramets increases. Self-thinning should be the result of local competition among effective number of individuals in a population, rather than apparent crowding degree presented by whole individuals. The critical mass-density allometry based on whole individuals should be only a special case.


2019 ◽  
Vol 622 ◽  
pp. A151 ◽  
Author(s):  
Holly L. Capelo ◽  
Jan Moláček ◽  
Michiel Lambrechts ◽  
John Lawson ◽  
Anders Johansen ◽  
...  

Forming macroscopic solid bodies in circumstellar discs requires local dust concentration levels significantly higher than the mean. Interactions of the dust particles with the gas must serve to augment local particle densities, and facilitate growth past barriers in the metre size range. Amongst a number of mechanisms that can amplify the local density of solids, aerodynamic streaming instability (SI) is one of the most promising. This work tests the physical assumptions of models that lead to SI in protoplanetary discs (PPDs). We conduct laboratory experiments in which we track the three-dimensional motion of spherical solid particles fluidised in a low-pressure, laminar, incompressible, gas stream. The particle sizes span the Stokes–Epstein drag regime transition and the overall dust-to-gas mass density ratio,ϵ, is close to unity. A recently published study establishes the similarity of the laboratory flow to a simplified PPD model flow. We study velocity statistics and perform time-series analysis of the advected flow to obtain experimental results suggesting an instability due to particle-gas interaction: (i) there exist variations in particle concentration in the direction of the mean relative motion between the gas and the particles, that is the direction of the mean drag forces; (ii) the particles have a tendency to “catch up” to one another when they are in proximity; (iii) particle clumping occurs on very small scales, which implies local enhancements above the backgroundϵby factors of several tens; (iv) the presence of these density enhancements occurs for a meanϵapproaching or greater than 1; (v) we find evidence for collective particle drag reduction when the local particle number density becomes high and when the background gas pressure is high so that the drag is in the continuum regime. The experiments presented here are precedent-setting for observing SI under controlled conditions and may lead to a deeper understanding of how it operates in nature.


2020 ◽  
Vol 498 (1) ◽  
pp. 883-898 ◽  
Author(s):  
Kathryn Grasha ◽  
Jeremy Darling ◽  
Adam K Leroy ◽  
Alberto D Bolatto

ABSTRACT We present the results of a blind search for intervening H i 21 cm absorption towards 260 radio sources in the redshift range 0 < z < 2.74 with the Green Bank Telescope. The survey has the sensitivity to detect sub-damped Ly α (DLA) systems for H i spin temperatures Ts/f = 100 K, and despite the successful re-detection of 10 known 21 cm absorbers in the sample, we detect no new absorption lines in the full survey. Sources detected in 21 cm absorption were also searched for hydroxyl (OH) 18 cm absorption and we re-detect 1667 MHz OH absorption towards PKS 1830-211. We searched for intervening H i 21 cm absorption along the line of sight in each source achieving a total redshift coverage of Δz = 88.64 (comoving absorption path of ΔX = 159.5) after removing regions affected by radio frequency interference. We compute a 95 per cent confidence upper limit on the column density frequency distribution f(NH i) and set a statistical constraint on the spin temperature Ts in the range 100–1000 K, consistent with prior redshifted optical DLA surveys and H i 21 cm emission observations at the same redshifts. We infer a value for the cosmological mass density of neutral gas, ΩH i. Through comparison with prior ΩH i measurements, we place a statistical constraint on the mean spin temperature of Ts/f = 175 K. Our derived ΩH i values support a relative mild evolution in ΩH i over the last 11 Gyr and are consistent with other methods that measure ΩH i.


1978 ◽  
Vol 79 ◽  
pp. 281-286

Tammann: The question of the mean mass density in the Universe has been mentioned many times and the organisers thought it would be useful to look at future prospects for obtaining improved estimates of Ω. the methods may be split into two types. First, the conventional methods involve determining the luminosity density in the Universe and multiplying by an appropriate mass-to-luminosity ratio. It must be emphasised that the mass determinations are dynamical and that most of the mass is not visible. There is good agreement among independent workers about the luminosity density and this figure seems to be known within a factor of 2. the appropriate mean value of M/L is more controversial, values between 10 and 200 having been discussed in the preceding lectures. It is agreed, however, that if the mean value of M/L lies in this range, one cannot close the Universe. Perhaps one should be more cautious and say that even granted the uncertainties in the quantities involved, it is unlikely that the Universe is closed.


1977 ◽  
Vol 4 (2) ◽  
pp. 33-33
Author(s):  
M. Joeveer ◽  
J. Einasto

It is possible to estimate the galactic mass density in the solar neighbourhood either directly by summing up the mass densities of individual subsystems of stars and interstellar matter or indirectly from dynamical considerations.Observational data on the number density of visible stars lead to mutually consistent results on the stellar component of the mass density. The mean of different estimates is ⍴stars=0.052±0.010 Mʘpc−3. By adding the probable contributions of intrinsically faint undetected objects and of interstellar matter the value ⍴=0.09±0.02 Mʘpc−3 has been obtained for the total mass density.


Sign in / Sign up

Export Citation Format

Share Document