Understanding composite negative differential resistance in niobium oxide memristors

Author(s):  
Xinjun Liu ◽  
Peng Zhang ◽  
Shimul Kanti Nath ◽  
Shuai Li ◽  
Sanjoy Kumar Nandi ◽  
...  

Abstract Volatile memristors, or threshold switching devices, exhibit a diverse range of negative differential resistance (NDR) characteristics under current-controlled operation and understanding the origin of these responses is of great importance for exploring their potential as nano-scale oscillators for neuromorphic computing. Here we use a developed two-zone, parallel memristor model of NDR to undertake a systematic analysis of NDR modes in two-terminal metal-oxide-metal devices. The model assumes that the non-uniform current distribution associated with filamentary conduction can be represented by a high current density core and a lower current-density shell where the core is assumed to have a memristive response due to Poole-Frenkel conduction and the shell is represented by either a fixed resistor or a second memristive region. The detail analysis of the electrical circuits is undertaken using a lumped-element thermal model of the core-shell structure, and is shown to reproduce continuous and discontinuous NDR responses, as well as more complex compound behaviour. Finally, an interesting double-window oscillation behaviour is predicted and experimentally verified for a device with compound NDR behaviour. These results clearly identify the origin of different NDR responses and provide a strong basis for designing devices with complex NDR characteristics.

Nano Letters ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 3919-3925 ◽  
Author(s):  
G. William Burg ◽  
Nitin Prasad ◽  
Babak Fallahazad ◽  
Amithraj Valsaraj ◽  
Kyounghwan Kim ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 673 ◽  
Author(s):  
Chih Chin Yang

A resonant tunneling electronic circuit (RTEC) with high and multiple peak-to-valley current density ratios (PVCDRs) exhibited in the negative differential resistance (NDR) curve has been proposed in this research. The PVCDR values in simulating research and experimental research of double PVCDR RTEC were respectively reached as high as 1.79 and 22 in average, which were obtained using the designed single PVCDR RTECs structure. Also, the peak current density (PCD) values of the last NDR in the double PVCDR RTEC structure in the simulation and experiment were respectively 1.85 A and 42 µA. Triple NDR characteristics also had been obtained with the PCD values reaching as high as 2.9 A and 46 µA, respectively, in simulating and experimental researches. The PVCDR values of triple NDR characteristic were respectively 1.5 and 4.6 in the simulation and experiment.


2012 ◽  
Vol 11 (04) ◽  
pp. 1240014 ◽  
Author(s):  
GITANJALI KOLHATKAR ◽  
JEFFREY F. WHEELDON ◽  
CHRISTOPHER E. VALDIVIA ◽  
ALEXANDRE W. WALKER ◽  
SIMON FAFARD ◽  
...  

The current–voltage characteristics of AlGaAs/AlGaAs tunnel junctions for use in multi-junction solar cells are studied experimentally, where tunneling current peaks of 1100 A/cm2 and specific contact resistivities of 0.3 × 10-4Ω⋅cm2 at 7 A/cm2 (typical concentrated photovoltaic operating current) are measured. This represents an ideal tunnel junction design, with a very low resistance and one of the highest tunneling peak currents reported for solar cells. Normally, solar cell current–voltage characteristics are measured using time-averaged methods, which, in this study, reveal a tunneling peak current density of ~950 A/cm2. Due to nonlinear oscillations within the measurement circuit, the precise locations and magnitudes of the tunneling peak and valley current densities are obscured when using time-average measurement methods. Here we present an alternative method to determine the tunneling peak current density, in which the nonlinear oscillations in the current and voltage are recorded over time and a current density–voltage curve is reconstructed. This time-dependent method results in a measured tunneling peak current density of ~ 1100 A/cm2. The nonlinear oscillations of the experimental circuit are reproduced by modeling an equivalent circuit, resulting in qualitative agreement with the observed oscillations. This model predicts the capacitance and inductance of the equivalent circuit to be approximately 3 nF and 3.5 μH, respectively. This numerical model can be used to determine the inductance and the capacitance of any circuit having a negative differential resistance region.


Author(s):  
P. J. Lee ◽  
D. C. Larbalestier

Several features of the metallurgy of superconducting composites of Nb-Ti in a Cu matrix are of interest. The cold drawing strains are generally of order 8-10, producing a very fine grain structure of diameter 30-50 nm. Heat treatments of as little as 3 hours at 300 C (∼ 0.27 TM) produce a thin (1-3 nm) Ti-rich grain boundary film, the precipitate later growing out at triple points to 50-100 nm dia. Further plastic deformation of these larger a-Ti precipitates by strains of 3-4 produces an elongated ribbon morphology (of order 3 x 50 nm in transverse section) and it is the thickness and separation of these precipitates which are believed to control the superconducting properties. The present paper describes initial attempts to put our understanding of the metallurgy of these heavily cold-worked composites on a quantitative basis. The composite studied was fabricated in our own laboratory, using six intermediate heat treatments. This process enabled very high critical current density (Jc) values to be obtained. Samples were cut from the composite at many processing stages and a report of the structure of a number of these samples is made here.


2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


2002 ◽  
Vol 25 (3) ◽  
pp. 233-237
Author(s):  
K. F. Yarn

First observation of switching behavior is reported in GaAs metal-insulator-p-n+structure, where the thin insulator is grown at low temperature by a liquid phase chemical-enhanced oxide (LPECO) with a thickness of 100 Å. A significant S-shaped negative differential resistance (NDR) is shown to occur that originates from the regenerative feedback in a tunnel metal/insulator/semiconductor (MIS) interface andp-n+junction. The influence of epitaxial doping concentration on the switching and holding voltages is investigated. The switching voltages are found to be decreased when increasing the epitaxial doping concentration, while the holding voltages are almost kept constant. A high turn-off/turn-on resistance ratio up to105has been obtained.


Sign in / Sign up

Export Citation Format

Share Document