Doping Limitation Due to Self-compensation by Native Defects in In-doped Rocksalt CdxZn1-xO

Author(s):  
Chun Yuen HO ◽  
Chia Hsiang Li ◽  
Chao Ping Liu ◽  
Zhi-Quan Huang ◽  
Feng-Chuan Chuang ◽  
...  

Abstract CdO-ZnO alloys (CdxZn1-xO) exhibit a transformation from the wurtzite (WZ) to the rocksalt (RS) phase at a CdO composition of ~70% with a drastic change in the band gap and electrical properties. RS-CdxZn1-xO alloys (x>0.7) are particularly interesting for transparent conductor applications due to their wide band gap and high electron mobility. In this work, we synthesized RS-CdxZn1-xO alloys doped with different concentrations of In dopants and evaluated their electrical and optical properties. Experimental results are analyzed in terms of the amphoteric native defect model and compared directly to defect formation energies obtained by hybrid density functional theory (DFT) calculations. A saturation in electron concentration of ~7x1020cm-3 accompanied by a rapid drop in electron mobility is observed for the RS-CdxZn1-xO films with 0.7≤x<1 when the In dopant concentration [In] is larger than 3%. Hybrid DFT calculations confirm that the formation energy of metal vacancy acceptor defects is significantly lower in RS-CdxZn1-xO than in CdO, and hence limits the free carrier concentration. Mobility calculations reveal that due to the strong compensation by native defects, RS-CdxZn1-xO alloys exhibit a compensation ratio of >0.7 for films with x<0.8. As a consequence of the compensation by native defects, in heavily doped RS-CdxZn1-xO carrier-induced band filling effect is limited. Furthermore, the much lower mobility of the RS-CdxZn1-xO alloys also results in a higher resistivity and reduced transmittance in the near infra-red region (λ>1100 nm), making the material not suitable as transparent conductors for full spectrum photovoltaics.

2017 ◽  
Vol 16 ◽  
pp. 47-51
Author(s):  
Emmanuel Igumbor ◽  
Ezekiel Omotoso ◽  
Walter Ernst Meyer

We present results of defect formation energies and charge state thermodynamic transition levels of Mg and Te interstitials in MgTe wurzite structure. We use the generalized gradient approximation and local density approximation functionals in the framework of density functional theory for all calculations. The formation energies of the Mg and Te interstitials in MgTe for both the tetrahedral and hexagonal configurations were obtained. The Mg and Te interstitials in MgTe depending on the functional, introduced transition state levels that are either donor or acceptor within the band gap of the MgTe. The Te interstitial exhibit charge states controlled metastability, negative-U and DX centre properties. The Mg interstitial acts as deep or shallow donor and there is no evidence of acceptor levels found for the Mg interstitial.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3743 ◽  
Author(s):  
Qingyang Fan ◽  
Xin Ai ◽  
Junni Zhou ◽  
Xinhai Yu ◽  
Wei Zhang ◽  
...  

In this work, the elastic anisotropy, mechanical stability, and electronic properties for P42/mnm XN (XN = BN, AlN, GaN, and InN) and Pbca XN are researched based on density functional theory. Here, the XN in the P42/mnm and Pbca phases have a mechanic stability and dynamic stability. Compared with the Pnma phase and Pm-3n phase, the P42/mnm and Pbca phases have greater values of bulk modulus and shear modulus. The ratio of the bulk modulus (B), shear modulus (G), and Poisson’s ratio (v) of XN in the P42/mnm and Pbca phases are smaller than those for Pnma XN and Pm-3n XN, and larger than those for c-XN, indicating that Pnma XN and Pm-3n XN are more ductile than P42/mnm XN and Pbca XN, and that c-XN is more brittle than P42/mnm XN and Pbca XN. In addition, in the Pbca phases, XN can be considered a semiconductor material, while in the P42/mnm phase, GaN and InN have direct band-gap, and BN and AlN are indirect wide band gap materials. The novel III-V nitride polymorphs in the P42/mnm and Pbca phases may have great potential for application in visible light detectors, ultraviolet detectors, infrared detectors, and light-emitting diodes.


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 70-79 ◽  
Author(s):  
Nurapati Pantha ◽  
Jagaran Acharya ◽  
Narayan Prasad Adhikari

We study the structural and electronic properties of solid methane of space group P212121 at high pressure. The density-functional theory (DFT) based first-principles calculations within the Generalized Gradient Approximations (GGA) have been performed by using Quantum Espresso package. Our findings show that the solid methane in orthorhombic structure compresses fast at the first, and then slowly as a function of elevated hydrostatic pressure. The pressure-volume diagram agrees with the available previously reported data up to pressure of around 200 GPa. In orthorhombic structure, solid methane is a wide band gap insulator at low pressures (tens of GPa). The band gap decreases with increase in the pressure. At high pressure (around 900 GPa), the band gap decreases to semi-conductor range (1.78 eV). Our results reveal that methane to be metallic above the pressure coverage of the present study which is consistent to the interior of the giant planets. The band gap as a function of pressure (from the present work) agrees well with the previously reported data. DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11779BIBECHANA 12 (2015) 70-79


2015 ◽  
Vol 117 (22) ◽  
pp. 225702 ◽  
Author(s):  
Anshu Goyal ◽  
Ashok K. Kapoor ◽  
R. Raman ◽  
Sandeep Dalal ◽  
Premila Mohan ◽  
...  

1989 ◽  
Vol 163 ◽  
Author(s):  
W. Walukiewicz

AbstractFormation of native defects in GaAs is described in terms of the amphoteric native defect model. It is shown that Fermi energy induced formation of gallium vacancies is responsible for the limitations of maximum free electron concentration in GaAs. The effect of the defects on electron mobility in heavily doped n-GaAs is quantitatively evaluated. Defect scattering explains the abrupt reduction of electron mobility at high doping levels. Also, it is demonstrated that native defects are responsible for the mobility reduction in inverted modulation doped GaAs/AlGaAs heterostructures. The amphoteric defect model also explains a distinct asymmetry in defect formation in n- and p-GaAs. In p-GaAs the Fermi level induced reduction of the defect formation energy is much smaller, and therefore the concentration of the native defects is negligible compared with the hole concentration.


2006 ◽  
Vol 251-252 ◽  
pp. 1-12 ◽  
Author(s):  
Faruque M. Hossain ◽  
Graeme E. Murch ◽  
L. Sheppard ◽  
Janusz Nowotny

The purpose of this work is to study the effect of bulk point defects on the electronic structure of rutile TiO2. The paper is focused on the effect of oxygen nonstoichiometry in the form of oxygen vacancies, Ti interstitials and Ti vacancies and related defect disorder on the band gap width and on the local energy levels inside the band gap. Ab initio density functional theory is used to calculate the formation energies of such intrinsic defects and to detect the positions of these defect induced energy levels in order to visualize the tendency of forming local mid-gap bands. Apart from the formation energy of the Ti vacancies (where experimental data do not exist) our calculated results of the defect formation energies are in fair agreement with the experimental results and the defect energy levels consistently support the experimental observations. The calculated results indicate that the exact position of defect energy levels depends on the estimated band gap and also the charge state of the point defects of TiO2.


2014 ◽  
Vol 2 (17) ◽  
pp. 3429-3438 ◽  
Author(s):  
David O. Scanlon ◽  
John Buckeridge ◽  
C. Richard A. Catlow ◽  
Graeme W. Watson

Using state-of-the-art hybrid DFT calculations we explain the defect chemistry of LaCuOSe, a poorly understood wide band gap p-type conductor.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6128
Author(s):  
Blaise A. Ayirizia ◽  
Janee’ S. Brumfield ◽  
Yuriy Malozovsky ◽  
Diola Bagayoko

We report the results from self-consistent calculations of electronic, transport, and bulk properties of beryllium sulfide (BeS) in the zinc-blende phase, and employed an ab-initio local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We obtained the ground state properties of zb-BeS with the Bagayoko, Zhao, and Williams (BZW) computational method, as enhanced by Ekuma and Franklin (BZW-EF). Our findings include the electronic energy bands, the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the equilibrium lattice constant, and the bulk modulus. The calculated band structure clearly shows that zb-BeS has an indirect energy band gap of 5.436 eV, from Γ to a point between Γ and X, for an experimental lattice constant of 4.863 Å. This is in excellent agreement with the experiment, unlike the findings of more than 15 previous density functional theory (DFT) calculations that did not perform the generalized minimization of the energy functional, required by the second DFT theorem, which is inherent to the implementation of our BZW-EF method.


Sign in / Sign up

Export Citation Format

Share Document