Mechanism of the Body-Centered Cubic--Hexagonal Close-Packed Phase Transition in Iron

Science ◽  
1987 ◽  
Vol 238 (4828) ◽  
pp. 780-783 ◽  
Author(s):  
W. A. BASSETT ◽  
E. HUANG
1990 ◽  
Vol 5 (7) ◽  
pp. 1359-1362 ◽  
Author(s):  
J. Wolfenstine ◽  
G. González-Doncel ◽  
O. D. Sherby

The creep behavior of Mg–14Li particulate composites containing 0,10,20, and 30 vol. % boron particles was evaluated from 230 to 280°C. The results reveal that the creep strength of the particulate composite is increased by a factor of eight over the Mg–14Li matrix with the addition of 30 vol. % boron. The body-centered cubic (bcc) Mg–14Li alloy is shown, however, to be much weaker than hexagonal close-packed (hep) pure magnesium. This difference is attributed to the high rate of atom mobility in the open structure of the Mg–14Li bcc alloy. It is predicted that a Mg–6Li–30B particulate composite, containing an hep matrix structure, will have a higher specific strength at 250°C than the new experimental aluminum base–high iron alloys prepared by rapid solidification processing.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract We have investigated the shock-induced plasticity and phase transition in the hexagonal columnar nanocrystalline (HCN) Mg by large-scale nonequilibrium molecular dynamics simulations (NEMD). The preexisting grain boundaries (GBs) induce the nucleation of the {10-12} twins for the local stress relaxation. The twins grow up in grains leading to the orientation rotation. The phase transition from the hexagonal close-packed (HCP) phase to the body-centered cubic (BCC) phase begins when the migrating twin grain boundaries (TGBs) meet in A- and C-type grains, and continues in the plastic deformation regions. The phase-transition pathway involves two steps: the reorientation and phase transformation.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang Xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract An effective and reliable Finnis-Sinclair (FS) type potential is developed for large-scale molecular dynamics (MD) simulations of plasticity and phase transition of Magnesium (Mg) single crystals under high-pressure shock loading. The shock-wave profiles exhibit a split elastic-inelastic wave in the [0001]HCP shock orientation and a three-wave structure in the [10-10]HCP and [-12-10]HCP directions, namely, an elastic precursor following the plastic and phase-transition fronts. The shock Hugoniot of the particle velocity (Up) vs. the shock velocity (Us) of Mg single crystals in three shock directions under low shock strength reveals apparent anisotropy, which vanishes with increasing shock strength. For the [0001]HCP shock direction, the amorphization caused by strong atomic strain plays an important role in the phase transition and allows for the phase transition from an isotropic stressed state to the daughter phase. The reorientation in the shock directions [10-10]HCP and [-12-10]HCP, as the primary plasticity deformation, leads to the compressed hexagonal close-packed (HCP) phase and reduces the phase-transition threshold pressure. The phase-transition pathway in the shock direction [0001]HCP includes a preferential contraction strain along the [0001]HCP direction, a tension along [-12-10]HCP direction, an effective contraction and shear along the [10-10]HCP direction. For the [10-10]HCP and [-12-10]HCP shock directions, the phase-transition pathway consists of two steps: a reorientation and the subsequent transition from the reorientation hexagonal close-packed phase (RHCP) to the body-centered cubic (BCC). The orientation relationships between HCP and BCC are (0001)HCP á-12-10ñHCP // {110}BCC á001ñBCC. Due to different slipping directions during the phase transition, three variants of the product phase are observed in the shocked samples, accompanied by three kinds of typical coherent twin-grain boundaries between the variants. The results indicate that the highly concentrated shear stress leads to the crystal lattice instability in the elastic precursor, and the plasticity or the phase transition relaxed the shear stress.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


1976 ◽  
Vol 31 (12) ◽  
pp. 1539-1542 ◽  
Author(s):  
H. M. Ledbetter

Abstract The Poisson ratio υ of a polycrystalline aggregate was calculated for both the face-centered cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential was used. Deviations of υ from 0.25 were verified. A lower value of υ is predicted for the f.c.c. case than for the b.c.c. case. Observed values of υ for twenty-three cubic elements are discussed in terms of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-atomic potential are discussed.


1995 ◽  
Vol 387 ◽  
Author(s):  
M. J. O'Keefe ◽  
C. L. Cerny

AbstractPhysical vapor deposition of Group VI elements (Cr, Mo, W) can lead to the formation of a metastable A-15 crystal structure under certain processing conditions. Typically, a thermally induced transformation of the metastable A-15 structure into the equilibrium body centered cubic structure has been accomplished by conventional furnace annealing at T/Tm ≈ 0.3 from tens of minutes to several hours. In this study we report on the use of rapid thermal annealing to transform sputter deposited A- 15 crystal structure tungsten and chromium thin films into body centered cubic films within the same temperature range but at times on the order of one minute. The minimum annealing times and temperatures required for complete transformation of the A-15 phase into the BCC phase varied from sample to sample, indicating that the transformation was dependent on the film characteristics. The electrical resistivity of A-15 Cr and W films was measured before and after rapid thermal annealing and was found to significantly decrease after transformation into the body center cubic phase.


2013 ◽  
Vol 203-204 ◽  
pp. 111-114
Author(s):  
Adam Bunsch ◽  
Wiktoria Ratuszek ◽  
Małgorzata Witkowska ◽  
Joanna Kowalska ◽  
Aneta Łukaszek-Sołek

This paper presents the results of the texture investigation in the hexagonal phase and the body-centered cubic  phase of the Ti6Al4V alloy hot-deformed by forging. Forging was performed at two different temperatures on the occurrence of the single  and in the two-phase  +  state. It was found that after deformation both  and  phases are textured and their textures strongly depends on deformation temperature.


1997 ◽  
Vol 75 (1) ◽  
pp. 77-82 ◽  
Author(s):  
M. Apostol ◽  
F. Rachdi ◽  
C. Goze ◽  
L. Hajji

Sodium (Na) clusters in octahedral cages of Na-intercalated fullerides Na6C60 and Na11C60 are studied within a Thomas–Fermi model. It is shown that the tetrahedral Na4 cluster in Na6C60 has an electric charge ~ +2.7 (in electron charge units), while the body-centered cubic Na9 cluster in Na11C60 is almost electrically neutral. Keywords: sodium clusters, alkali fullerides, Thomas–Fermi theory, ionization charge.


2008 ◽  
Vol 254 (22) ◽  
pp. 7155-7158 ◽  
Author(s):  
Jinghai Yang ◽  
Bo Feng ◽  
Yang Liu ◽  
Yongjun Zhang ◽  
Lili Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document