Accelerated and Outdoor Weathering of Silver Nanowire Transparent Conductors under Electrical Stress in Pseudo-modules

2021 ◽  
Author(s):  
Hung-Shuo Chang ◽  
PAN FENG ◽  
Yadong Lyu ◽  
Chiao-Chi Lin

Abstract In realistic applications, silver nanowires (AgNWs) are encapsulated in optoelectrical devices to function as transparent conductors and electrodes. Environmental stressors along with the essential electrical stress are inevitably harmful to the AgNWs inside the devices. Herein, to investigate the degradation behavior discrepancy between materials-level and device-level tests, we adopted pseudo-module to mimic the encapsulation. The pseudo-module allows the application of electrical stress and facilitates the interim specimen access for materials characterization through assembly-disassembly. Indoor accelerated and outdoor weathering tests with applied electrical stress to the pseudo-module encapsulated AgNW networks were performed. The impaired optoelectrical properties and morphological changes of AgNWs due to multiple or individual stressor(s) are investigated. Results indicate UVA exposure at elevated temperature coupled with electrical stress is responsible for the electrical failure of AgNW networks. Sulfidation that depresses optical transparency of AgNW networks is prone to occur at lower temperature. This work provides unambiguous degradation behaviors of AgNWs inside encapsulants, helping to improve the design of AgNWs related optoelectrical devices in the applications of solar irradiation environments.

2016 ◽  
Vol 4 (15) ◽  
pp. 3248-3255 ◽  
Author(s):  
William J. Scheideler ◽  
Jeremy Smith ◽  
Igal Deckman ◽  
Seungjun Chung ◽  
Ana Claudia Arias ◽  
...  

We developed robust, gravure-printed, transparent conductors based on silver nanowires embedded in an indium zinc oxide matrix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
June Sik Hwang ◽  
Jong-Eun Park ◽  
Gun Woo Kim ◽  
Hyeono Nam ◽  
Sangseok Yu ◽  
...  

AbstractAs silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2219
Author(s):  
Xiaopeng Li ◽  
Jiayue Zhou ◽  
Dejun Yan ◽  
Yong Peng ◽  
Yong Wang ◽  
...  

In this paper, silver nanowires (AgNWs) with a diameter of 40 nm and a length of 45 μm were dispersed into an ethanol solution to prepare AgNW solutions with concentrations of 1, 2, and 3 mg/mL, respectively. The AgNW solutions were then deposited on a glass substrate using spin-coating at 1000, 2000, and 3000 rpm for 45 s, respectively, to prepare transparent electrodes. The results showed that the distribution of AgNWs on the substrate increased in density with the increase in the AgNW solution concentration and the decrease in spin speed. The effect of concentration on the distribution of AgNWs was greater than that of the spin speed. The transmittance of each electrode was between 84.19% and 88.12% at 550 nm, the average sheet resistance was between 20.09 and 358.11 Ω/sq, the highest figure of merit (FoM) was 104.42, and the lowest haze value was 1.48%. The electrode prepared at 1000 rpm with a concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL were very similar in terms of the average sheet resistance, transmittance at 550 nm, FoM, and haze value; thus, these two electrodes could be considered equivalent. The haze value of the electrode was positively correlated with the spin speed at low concentration, but that relationship became inverse as the concentration rose. For the AgNWs used in this experiment with an aspect ratio of 1125, the concentration of the AgNW solution should reach at least 2 mg/mL to ensure that the FoM of the electrode is greater than 35.


Soft Matter ◽  
2017 ◽  
Vol 13 (37) ◽  
pp. 6390-6395 ◽  
Author(s):  
Ye Rim Lee ◽  
Hyungho Kwon ◽  
Do Hoon Lee ◽  
Byung Yang Lee

Electrodes consisting of silver nanowires and carbon nanotubes enable a dielectric elastomer actuator to become highly stretchable and optically transparent.


2012 ◽  
Vol 72 (2) ◽  
pp. 343-351 ◽  
Author(s):  
MC. Bittencourt-Oliveira ◽  
B. Buch ◽  
TC. Hereman ◽  
JDT. Arruda-Neto ◽  
AN. Moura ◽  
...  

Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Ordem Nostocales) is one of the most troublesome bloom-forming species in Brazil. Understanding the population dynamics of the different morphotypes of C. raciborskii (straight and coiled) could assist in the prediction of favourable conditions for the proliferation of this potentially toxin-producing species. The aim of the present study was to assess the effects of two different light intensities and temperatures on the growth rate and morphology of the trichomes of the straight and coiled morphotypes. For such, two non-toxin producing strains of C. raciborskii were used - one with a coiled trichome (ITEP31) and another with a straight trichome (ITEP28). The strains were cultured in BG-11 medium in a climatic chamber under controlled conditions. Two light intensities (30 and 90 µmol.m-2.s-1 ) were combined at temperatures of 21 and 31 °C and the growth rate and morphological changes were analysed. The morphotypes responded differently to the different temperatures and light intensities. Both strains exhibited faster growth velocities when submitted to higher light intensity and temperature. The lower temperature and higher luminosity hampered the development of both strains. Variations in cellular morphology and an absence of akinetes in both strains were related to the lower temperature (21 °C). The coiled morphotype demonstrated considerable phenotype plasticity, changing the morphology of trichome throughout its growth curve. Although molecular analysis does not sustain the separation of the morphotypes as distinct species, their different eco-physiological responses should be considered further knowledge of extreme importance for the population control of these potentially toxic organisms.


2019 ◽  
Vol 19 (11) ◽  
pp. 6995-7003 ◽  
Author(s):  
Mohd Arif Mohd Sarjidan ◽  
Ahmad Shuhaimi ◽  
Wan Haliza Abd. Majid

A simple spin-coating process for fabricating vertical organic light-emitting transistors (VOLETs) is realized by utilizing silver nanowire (AgNW) as a source electrode. The optical, electrical and morphological properties of the AgNW formation was initially optimized, prior VOFET fabrication. A high molecular weight of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] MEH-PPV was used as an organic semiconductor layer in the VOFET in forming a multilayer structure by solution process. It was found that current density and luminance intensity of the VOLET can be modulated by a small magnitude of gate voltage. The modulation process was induced by changing an injection barrier via gate voltage bias. A space-charge-limited current (SCLC) approach in determining transistor mobility has been introduced. This preliminary and fundamental work is beneficial towards all-solution processing display devices.


Sign in / Sign up

Export Citation Format

Share Document