A Self-powered and Sensitive Terahertz Photodetection based on PdSe2

2022 ◽  
Author(s):  
Jie Zhou ◽  
Xueyan Wang ◽  
Zhiqingzi Chen ◽  
Libo Zhang ◽  
Chengyu Yao ◽  
...  

Abstract With the rapid development of terahertz technology, terahertz detectors are expected to play a key role in diverse areas such as homeland security and imaging, materials diagnostics, biology and medical sciences, communication. Whereas self-powered, rapid response, and room temperature terahertz photodetectors are confronted with huge challenges. Here, we report a novel rapid response and self-powered terahertz photothermoelectronic (PTE) photodetector based on a low-dimensional material: palladium selenide (PdSe2). An order of magnitude performance enhancement was observed in photodetection based on PdSe2/graphene heterojunction that resulted from the integration of graphene and enhanced the Seebeck effect. Under 0.1 THz and 0.3 THz irradiation, the device displays a stable and repeatable photoresponse at room temperature without bias. Furthermore, rapid rise (5.0 μs) and decay (5.4 μs) times are recorded under 0.1 THz irradiation. Our results demonstrate the promising prospect of the detector based on PdSe2 in terms of air-stable, suitable sensitivity, and speed, which may have great application in terahertz detection.

2020 ◽  
Vol 8 (35) ◽  
pp. 12148-12154 ◽  
Author(s):  
Yifan Li ◽  
Yating Zhang ◽  
Tengteng Li ◽  
Xin Tang ◽  
Mengyao Li ◽  
...  

A novel self-powered NIR and THz PTE PD based on a (MAPbI3/PEDOT:PSS) composite with a rapid response time of 28 μs.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Juan A. Delgado-Notario ◽  
Wojciech Knap ◽  
Vito Clericò ◽  
Juan Salvador-Sánchez ◽  
Jaime Calvo-Gallego ◽  
...  

Abstract Terahertz (THz) waves have revealed a great potential for use in various fields and for a wide range of challenging applications. High-performance detectors are, however, vital for exploitation of THz technology. Graphene plasmonic THz detectors have proven to be promising optoelectronic devices, but improving their performance is still necessary. In this work, an asymmetric-dual-grating-gate graphene-terahertz-field-effect-transistor with a graphite back-gate was fabricated and characterized under illumination of 0.3 THz radiation in the temperature range from 4.5 K up to the room temperature. The device was fabricated as a sub-THz detector using a heterostructure of h-BN/Graphene/h-BN/Graphite to make a transistor with a double asymmetric-grating-top-gate and a continuous graphite back-gate. By biasing the metallic top-gates and the graphite back-gate, abrupt n+n (or p+p) or np (or pn) junctions with different potential barriers are formed along the graphene layer leading to enhancement of the THz rectified signal by about an order of magnitude. The plasmonic rectification for graphene containing np junctions is interpreted as due to the plasmonic electron-hole ratchet mechanism, whereas, for graphene with n+n junctions, rectification is attributed to the differential plasmonic drag effect. This work shows a new way of responsivity enhancement and paves the way towards new record performances of graphene THz nano-photodetectors.


2003 ◽  
Vol 775 ◽  
Author(s):  
Tsuyoshi Kijima ◽  
Kenichi Iwanaga ◽  
Tomomi Hamasuna ◽  
Shinji Mohri ◽  
Mitsunori Yada ◽  
...  

AbstractEuropium-doped hexagonal-mesostructured and nanotubular yttrium oxides templated by dodecylsulfate species as well as surfactant free bulk oxides were synthesized by the homogeneous precipitation method. All the as grown nanostructured or bulk materials with amorphous or poorly crystalline frameworks showed weak luminescence bands at room temperature. On calcination at 1000°C these materials were converted into highly crystalline yttrium oxides, resulting in a total increase in intensity of all the bands by one order of magnitude. In the hexagonal-mesostructured system, the main band due to the 5D0-7F2 transition for the calcined phases showed a sharp but asymmetrical multiplet splitting indicating multiple Eu sites. Concentration quenching was found at a Eu content of 3 mol% or above for these phases. In contrast, the main emission for the calcined solids in the nanotubular system occurred as poorly resolved broad band and the intensity of the main band at higher Eu content was significantly enhanced compared with those for the other two systems.


2003 ◽  
Vol 775 ◽  
Author(s):  
Sung-Hwa Oh ◽  
Ju-Myung Song ◽  
Joon-Seop Kim ◽  
Hyang-Rim Oh ◽  
Jeong-A Yu

AbstractSolution behaviors of poly(styrene-co-sodium methacrylate) were studied by fluorescence spectroscopic methods using pyrene as a probe. The mol% of methacrylate was in the range 3.6–9.4. Water and N,N-dimethylforamide(DMF) mixture was used as a solvent (DMF/water = 0.2 mol %). The critical micelle (or aggregation) concentrations of ionomers and the partition coefficients of pyrene were obtained the temperature range 10–80°C. At room temperature, the values of CMCs (or CACs) were in the range 4.7 ×10-6 5.3 ×10-6 g/mL and we could not find any notable effect of the content of ionic repeat units within the experimental errors. Unlike CMCs, as the ion content increased, partitioning of pyrene between the hydrophobic aggregates and an aqueous media decreased from 1.5 ×105 to 9.4 ×104. As the temperature increased from 10 to 80 °C, the values of CMCs increased less than one order of magnitude. While, the partition coefficients of pyrene decreased one order of magnitude and the effect of the ion content became negligible.


Nano Energy ◽  
2020 ◽  
Vol 72 ◽  
pp. 104742 ◽  
Author(s):  
Yujia Zhong ◽  
Li Zhang ◽  
Vincent Linseis ◽  
Bingchao Qin ◽  
Wenduo Chen ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 330-369
Author(s):  
Norizan M. Nurazzi ◽  
Norli Abdullah ◽  
Siti Z. N. Demon ◽  
Norhana A. Halim ◽  
Ahmad F. M. Azmi ◽  
...  

Abstract Graphene is a single-atom-thick sheet of sp2 hybridized carbon atoms that are packed in a hexagonal honeycomb crystalline structure. This promising structure has endowed graphene with advantages in electrical, thermal, and mechanical properties such as room-temperature quantum Hall effect, long-range ballistic transport with around 10 times higher electron mobility than in Si and thermal conductivity in the order of 5,000 W/mK, and high electron mobility at room temperature (250,000 cm2/V s). Another promising characteristic of graphene is large surface area (2,630 m2/g) which has emerged so far with its utilization as novel electronic devices especially for ultrasensitive chemical sensor and reinforcement for the structural component applications. The application of graphene is challenged by concerns of synthesis techniques, and the modifications involved to improve the usability of graphene have attracted extensive attention. Therefore, in this review, the research progress conducted in the previous decades with graphene and its derivatives for chemical detection and the novelty in performance enhancement of the chemical sensor towards the specific gases and their mechanism have been reviewed. The challenges faced by the current graphene-based sensors along with some of the probable solutions and their future improvements are also being included.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2123
Author(s):  
Ming Liu ◽  
Caochuang Wang ◽  
Pengcheng Li ◽  
Liang Cheng ◽  
Yongming Hu ◽  
...  

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25–2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600–1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.


2021 ◽  
Vol 7 (16) ◽  
pp. eabf7358
Author(s):  
Meng Peng ◽  
Runzhang Xie ◽  
Zhen Wang ◽  
Peng Wang ◽  
Fang Wang ◽  
...  

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W−1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W−1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition–grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Sign in / Sign up

Export Citation Format

Share Document