scholarly journals Laboratory modeling of a field-aligned currents system generated by a flow of inner magnetospheric plasma

2021 ◽  
Vol 2067 (1) ◽  
pp. 012020
Author(s):  
A Chibranov ◽  
A Berezutsky ◽  
M Efimov ◽  
Y Zakharov ◽  
I Miroshnichenko ◽  
...  

Abstract For the first time in laboratory conditions, an experiment to simulate a system of field-aligned currents arising on planets such as Hot Jupiters in the presence of dense inner-magnetospheric plasma was carried out. The magnitude and transit time of field-aligned currents were measured as a function of the magnetic field using flat electrodes. The geometry of the expansion of plasma streams was pictured by gated camera. Also, in a first approximation, the efficiency of energy transfer from plasma flows to field-aligned currents was calculated. The results obtained create a basis for future laboratory experiments on this topic and improve existing numerical models.

1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2021 ◽  
pp. 1-35
Author(s):  
Yingdong Xu ◽  
Dongze Yan ◽  
Kai Zhang ◽  
Xuequan Li ◽  
Y.F. Xing ◽  
...  

Abstract Most untethered magnetic soft robots are controlled by a continuously applied magnetic field. The accuracy of their motion depends completely on the accuracy of external magnetic field, consequently any slight disturbance may cause a dramatic change. Here, we report a new structure and driven method design to achieve a novel magnetic soft robot, which can achieve accurate and stable locomotion with weakly dependence on the magnetic field. The robot consists of functional magnetic composite materials with one central transportation platform and four crawling arms, whose motion is mainly based on hyperelastic buckling and recovering of the arms. The robot is capable of cargo transportation with multimodal locomotion, such as crawling, climbing and turning with high adaptability to various surfaces. The robot consumes much less driven energy compared to conventional magnetic robots. Moreover, we develop theoretical and numerical models to rationally design the precisely controlled robot. Our study shows applications in terms of transportation functions, such as for optical path adjustments and photographic tasks in complex circumstances. This work also provides new ideas on how to utilize nonlinear deformation more efficiently, one could combine the benefits for both the flexible electronics and actuation applications.


2020 ◽  
Author(s):  
Ovidiu Dragoş Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

Abstract. In situ measurement of the magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and time required to build a spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removal of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program and allowing for shorter boom length. The proposed algorithm is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean geostationary satellite GeoKompsat-2A (GK2A) which uses for the first time a multi-sensor configuration for onboard data cleaning. The successful elimination of disturbances originating from several sources validates the proposed cleaning technique.


2021 ◽  
Vol 923 (2) ◽  
pp. 208
Author(s):  
Siddhartha Gupta ◽  
Damiano Caprioli ◽  
Colby C. Haggerty

Abstract A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate, spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.


2014 ◽  
Vol 9 (S307) ◽  
pp. 389-390
Author(s):  
Coralie Neiner ◽  

AbstractUVMag is a medium-size space telescope equipped with a high-resolution spectropolarimetrer working in the UV and visible domains. It will be proposed to ESA for a future M mission. It will allow scientists to study all types of stars as well as e.g. exoplanets and the interstellar medium. It will be particularly useful for massive stars, since their spectral energy distribution peaks in the UV. UVMag will allow us to study massive stars and their circumstellar environment (in particular the stellar wind) spectroscopically in great details. Moreover, with UVMag's polarimetric capabilities we will be able, for the first time, to measure the magnetic field of massive stars simultaneously at the stellar surface and in the wind lines, i.e. to completely map their magnetosphere.


2019 ◽  
Vol 15 (S354) ◽  
pp. 268-279
Author(s):  
Dmitry V. Bisikalo ◽  
Andrey G. Zhilkin

AbstractHot Jupiters have extended gaseous (ionospheric) envelopes, which extend far beyond the Roche lobe. The envelopes are loosely bound to the planet and, therefore, are strongly influenced by fluctuations of the stellar wind. We show that, since hot Jupiters are close to the parent stars, magnetic field of the stellar wind is an important factor defining the structure of their magnetospheres. For a typical hot Jupiter, velocity of the stellar wind plasma flow around the atmosphere is close to the Alfvén velocity. As a result stellar wind fluctuations, such as coronal mass ejections, can affect the conditions for the formation of a bow shock around a hot Jupiter. This effect can affect observational manifestations of hot Jupiters.


Author(s):  
Henrik Melin

We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H 3 + provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H 3 + has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H 3 + at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2020 ◽  
Author(s):  
Dragos Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

<p>Measuring the in situ magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometers sensors at a large distance from the spacecraft body. This significantly drives up the costs and time for building the spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removing of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program.</p><p>The Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean Geostationary Satellite GEO-KOMPSAT-2A (GK-2A) uses for the first time a multi-sensor configuration for onboard data cleaning. To remove the AC disturbances, a combination of the measurements from sensors placed at different positions from the disturbance sources is processed onboard. Sensor biases due to daily temperature variations are also removed using the specific SOSMAG sensor arrangement. </p><p> </p>


Geophysics ◽  
1958 ◽  
Vol 23 (1) ◽  
pp. 128-133 ◽  
Author(s):  
James Paul Wesley

A dyke of sulfide ore may be geophysically prospected by observing its electromagnetic response to a slowly oscillating magnetic dipole source. An excellent first approximation of the fields generated is obtained by considering the idealized case of a dyke of infinite conductivity and vanishing thickness in a vacuum. Surprisingly, this idealized problem can be solved exactly in terms of a newly discovered Green’s function for Laplace’s equation (in three dimensions) which is simply expressed in closed form. The magnetic scalar potential and the magnetic field are given for final results.


1993 ◽  
Vol 10 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Qinghuan Luo

AbstractThe effects of the specific geometry of the magnetic field (such as field lines with torsion) on curvature emission and absorption in pulsar magnetospheres are discussed. Curvature maser emission can arise from two effects: the curvature drift, as has already been discussed in the literature, and field line torsion as discussed here in detail for the first time. Maser emission due to field line torsion can operate only when the Lorentz factor is larger than a certain value. However, when the Lorentz factor of electrons or positrons is sufficiently high, curvature masering is due to both curvature drift and magnetic field line torsion. The optical depth in the case of field line torsion is estimated. It is shown that if torsion is due to rotation, the resultant luminosity should be dependent on the rotation period in such a way that shorter periods correspond to larger luminosities.


Sign in / Sign up

Export Citation Format

Share Document