scholarly journals Numerical Investigation of M21 Aerofoil and Effect of Plain Flapper at Various Angle of Attack

2021 ◽  
Vol 2070 (1) ◽  
pp. 012153
Author(s):  
Vimal Patel ◽  
Vikram Rathod ◽  
Chirag Patel

Abstract The aerofoil plays an important role in any structure moving in a fluid-like in a passenger plane, jet plane, or helicopter. The aerofoils decide whether the lift force is appropriate to balance the weight of the plane or not and the amount of drag force is required on the vehicle. The purpose of this project is to simulate the M21 Aerofoil with the help of FLUENT and validate it with theory. This Project also includes the study of various Flapper designs and their simulation. Flappers are useful when the Airplane is about to take-off or landing. The Important parameters to be study are Lift Force, Drag Force, lift coefficient, and Drag coefficient. Simulation has been done for the different Angle of Attack which is useful for finding maximum Lift force and Stall Angle. The Work includes simulation of Plain Flapper for the Angle of Attack where CL/CD is maximum. Similar work can be done for different types of Flapper used in Airplane. The stall angle achieved for M21 was 24° and maximum value of CL/CD measured at 7° A.O.A. Investigation also shows that for the 10° plain flap angle highest drag and lift force was possible. It contains the study of the Adverse Yaw effect which rolls the Airplane while taking a turn. since the validity of any theoretical prediction can only be assessed in practice.

SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 23
Author(s):  
Alief Avicenna Luthfie ◽  
Dedik Romahadi ◽  
Hanif Ghufron ◽  
Solli Dwi Murtyas

Spoiler attached on the rear part of a car can generate drag force and negative lift force, called downforce. This drag force can increase air resistance to the car, meanwhile, a negative lift force can improve the car’s stability and safety. Refer to many researchers, the shape and the angle of the spoiler give different aerodynamic effects and therefore give a different value of drag force and lift force. Based on these facts, this study was focused on the analysis of different spoiler angle attached to a mini MPV car to drag and lift force generated by the spoiler. The method used in this study is a numerical simulation using the Computational Fluid Dynamics (CFD) technique. The analysis was carried out at different spoiler angle and car’s speed. The spoiler angles are -20o, -10o, 0o, 10o, and 20o. The car’s speeds are 40 km/h, 60 km/h, 80 km/h, 100 km/h, and 120 km/h. Then the drag and lift force and their coefficient generated by different spoiler angles were being investigated at specified speeds. The result shows that higher spoiler angles generate higher drag and lower lift. Spoiler angles higher than 0o generate negative lift force, otherwise generate positive lift force. Therefore, to increase a car’s stability and safety, it is recommended to use a spoiler angle higher than 0o. Based on the result, it is best to use spoiler angle 10o because it generates negative lift force with -0.05 lift coefficient and 0,68 drag coefficient.


2012 ◽  
Vol 225 ◽  
pp. 43-48
Author(s):  
M.F. Yaakub ◽  
A.A. Wahab ◽  
Mohammad Fahmi Abdul Ghafir ◽  
Siti Nur Mariani Mohd Yunos ◽  
Siti Juita Mastura Mohd Salleh ◽  
...  

During helicopter forward flight, the retreating blade revolves at high angle of attack compared to advancing blade in order to balance the lift and also to stabilise the helicopter. However, due to the aerodynamics limitations of the retreating blade at forward flight, stall may occur at high angle of attack compared with the advancing blade. This phenomenon is dangerous for pilot when controlling and balancing the helicopter while flying against strong wind. This paper investigates the capabilities of introducing multiple vortex traps on the upper surface of the helicopter airfoil in order to delay the stall angle of retreating helicopter blade. Blade Element Theory (BET) was applied to scrutinize the lift force along the helicopter blade. Computational Fluid Dynamic (CFD) analyses using the Shear-Stress Transport (SST) turbulence model was carried out to investigate the effect of groove on delaying the stall and to predict the separation of flow over the airfoil. Based on the CFD analyses, the optimization of the groove was done by analyzing the numbers and locations of the grooves. Finally, the results from both BET and the CFD analyses were utilised to obtain the lift force achieved by the vortex trap. The study showed that the presence of multiple vortex traps has successfully increased the lift coefficient and most importantly, delaying the stall angle.


Author(s):  
Shahrooz Eftekhari ◽  
Abdulkareem Shafiq Mahdi Al-Obaidi

The aerodynamic characteristics of a NACA0012 wing geometry at low Reynold’s numbers and angle of attack ranging from 0º to 90º are investigated using numerical simulations and the results are validated by wind tunnel experiments. Further experiments are conducted at low Reynold’s numbers of 1 × 105, 2 × 105 and 3 × 105. Findings of the study show a similar trend for the lift and drag coefficients at all the investigated Reynold’s numbers. The lift coefficient is linearly increased with angle of attack until it reaches its maximum value at 32º which is the stall angle. It is observed that further increment in angle of attack results in decrement of lift coefficient until it reaches its minimum value at 90º angle of attack. The drag force acting on the airfoil increases as the angle of attack is increased and increment in the drag force results in change of laminar flow to turbulent flow. As the turbulence gets higher the flow starts to separate from the airfoil surface due to eddies generated by turbulence. Hence, the lift force generated by the wing is reduced and drag force is increased simultaneously, which results in poor performance of the wing.


2013 ◽  
Vol 302 ◽  
pp. 640-645
Author(s):  
Su Jeong Lee ◽  
Eui Chul Jeong ◽  
Hee Chang Lim

In this study, a numerical simulation is made to understand the effect of the angle of attack on a NACA airfoil, which will be used for a basic shape to apply for making the vertical axis Darius wind turbine. The near-wall y+ value which is less than 1 is known to be most desirable for a near-wall modeling. Therefore, this study is aiming to observe the variation and find the optimized value of y+. The Reynolds number used in this study was 360,000, where the chord length and the velocity were 0.12m and 43.8m/s, respectively. Generally, the lift coefficient of the airfoil tends to increase as the angle of attack increases and it decreases substantially at the stall angle and then it decreases. As expected, the lift coefficient increases rapidly from 0 to 10° and then after the sudden drop of the lift (i.e., the stall) at around 10 to 16° depending on the y+ value. In this paper, it seems to be reliable and appropriate to use y+ value close to 1. From the surface pressure distribution, from the result obtained the ratio of pressure distribution of maximum value to the minimum value was 1.89and these peaks move forward to backward as the angle of attack increases.


2021 ◽  
Vol 11 (20) ◽  
pp. 9561
Author(s):  
Shunlei Zhang ◽  
Xudong Yang ◽  
Bifeng Song ◽  
Zhuoyuan Li ◽  
Bo Wang

Rotor airfoil design involves multi-point and multi-objective complex constraints. How to significantly improve the maximum lift coefficient and lift-to-drag ratio of rotor airfoil is a fundamental problem, which should be solved urgently in the development of high-performance helicopter rotor blades. To address this, discrete co-flow jet (DCFJ) technology is one methods with the most potential that can be harnessed to improve the performance of the rotor airfoil. In this study, wind tunnel experiments are conducted to study the effect of DCFJ technology on lift enhancement and drag reduction of OA312 airfoil. Furthermore, the performance improvement effects of the open co-flow jet (CFJ) and DCFJ technologies are studied. In addition, the influence of fundamental parameters, such as the obstruction factor and relative unit length, are analyzed. Results demonstrate that DCFJ technology is better than CFJ technology on the performance enhancement of the OA312 airfoil. Moreover, the DCFJ rotor airfoil can significantly reduce the drag coefficient and increase the maximum lift coefficient and the stall angle of attack. The maximum lift coefficient can be increased by nearly 67.3%, and the stall angle of attack can be delayed by about 12°. The DCFJ rotor airfoil can achieve the optimal performance when the obstruction factor is 1/2 and the relative unit length is 0.025.


1977 ◽  
Vol 99 (4) ◽  
pp. 618-633 ◽  
Author(s):  
M. M. Zdravkovich

There are infinite numbers of possible arrangements of two parallel cylinders positioned at right angles to the approaching flow direction. Of the infinite arrangements, two distinct groups may be identified: in one group, the cylinders are in a tandem arrangement, one behind the other at any longitudinal spacing; and in the second group, the cylinders face the flow side by side at any transverse spacing. All other combinations of longitudinal and transverse spacings represent staggered arrangements. The tandem arrangement will be treated first. A critical survey of previous research revealed some “odd” features which had been observed and overlooked by various authors. The discontinuity of vortex shedding implies that a similar discontinuity should be expected for the drag force on both cylinders. The measurements of the front (gap) pressures of the downstream cylinder and the base pressures of both cylinders at various spacings reveal a discontinuous “jump” at some critical spacing. The discontinuity is caused by the abrupt change from one stable flow pattern to another at the critical spacing. A new interpretation is given for the existing data on the drag force for both cylinders. The effects of Reynolds number and surface roughness are treated in some detail. Following this, two cylinders arranged side by side to the approaching flow are considered. All the available data on measured forces are compiled together with additional measurements in the range of intermittent changes of drag and lift forces. The bistable nature of the asymmetric flow pattern around each cylinder produces two alternative values of the drag force coupled with two alternative values of the lift force. The introduction of the interference force coefficient exposes the physical origin of two different forces experienced by the cylinders when arranged side by side. Finally, the least reported arrangement of two staggered cylinders is reviewed. The various arrangements are grouped into classes according to the sign of the lift force, or whether the drag force is greater or less than that for a single cylinder. The measurements of drag and lift forces for various arrangements reveal two different regimes for the lift force. In one regime, the lift force directed toward the wake of the upstream cylinder is due to the entrainment of the flow into the fully developed wake of the upstream cylinder. The lift force in this regime reaches a maximum value when the downstream cylinder is near to the upstream wake boundary. In the second regime, at very small spacings, the lift force becomes very large due to an intense gap flow which displaces the wake of the upstream cylinder. The maximum lift force occurs with the downstream cylinder near to the horizontal axis of the upstream cylinder. A discontinuity in the lift force for some staggered arrangements is found and attributed to the bistable nature of the gap flow.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


2015 ◽  
Vol 12 (3) ◽  
pp. 261-270
Author(s):  
Albert Boretti

The paper proposes a study of a GT2 racing car with a computational fluid dynamic (CFD) tool. Results of STAR-CCM+ simulations of the flow around the car in a wind tunnel with movable ground and wheels are presented for different air speeds to assess the different contributions of pressure and shear to lift and drag over the speed range. The rear wing contributes more than 85% of the lift force and 7-8% of the drag force for this particular class of racing cars. When reference is made to the low speed drag and lift coefficients, increasing the speed from 25 to 100 m/s produces an increase of CD of more than 3% and a reduction of CL of more than 2%. The resultsuggests modifying the constant CD and CL values used in lap time simulation toolsintroducing the tabulated values to interpolate vs. the speed of the car.


Author(s):  
Rui Liu ◽  
Junqiang Bai ◽  
Yasong Qiu ◽  
Guozhu Gao

The internal blown flap was numerically simulated. Firstly, a parameterization method was developed, which can properly describe the shape of the internal blown flap according to such geometrical parameters as flap chord length, flap deflection, height of blowing slot and its position. Then the reliability of the numerical simulation was validated through comparing the pressure distribution of the CC020-010EJ fundamental generic circulation control airfoil with the computational results and available experiment results. The effects of the geometrical parameters on the aerodynamic performance of the internal blown flap was investigated. The investigation results show that the lift coefficient increases with the increase of flap chord length and flap deflection angle and with the decrease of height of blowing slot and its front position. Lastly, a method of optimal design of the geometrical parameters of the internal blown flap was developed. The design variables include flap chord length, flap deflection, height of blowing slot and its position. The optimal design is based on maximum lift coefficient, the angle of attack of 5 degrees and the design constraint of stall angle of attack of less than 9 degrees. The optimization results show that the optimal design method can apparently raise the lift coefficient of an internal blown flap up to 1.7.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012069
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract Based on CFD, the flow field characteristics of NACA4412 airfoil are analyzed under pitching motion, and its aerodynamic characteristics are interpreted. The results show that streamline changes on the upper surface of the airfoil play a decisive role in the aerodynamic characteristics. The interaction between the vortex leads to fluctuations in the lift and drag coefficients. Under a big angle of attack, the secondary trailing vortex on the upper surface of the airfoil adheres to the trailing edge of the airfoil, resulting in an increased drag coefficient. Under a small angle of attack, the secondary trailing vortex can break away from the airfoil. The lift coefficient reaches the maximum value of 2.961 before the airfoil is turned upside down, and the drag coefficient reaches the maximum value of 1.515 after the airfoil is turned upside down, but the corresponding angles of attack of the two are equal.


Sign in / Sign up

Export Citation Format

Share Document