scholarly journals Mathematical modelling of optical radiation transport in biological tissues under the conditions of moveable integrating spheres registration

2021 ◽  
Vol 2090 (1) ◽  
pp. 012026
Author(s):  
T K Karpova ◽  
N V Kovalenko ◽  
G A Aloian ◽  
O A Ryabushkin

Abstract To describe the propagation of radiation in biological tissue, it is crucial to know the tissue’s optical characteristics. Integrating spheres method is widely used for experimental determination of optical properties of biological tissues. In this method, radiation scattered by the test sample in forward and backward directions is detected by the integrating spheres, along with the radiation that passed through the sample without scattering. In order to increase information content of the measurements, a moveable integrating spheres method was proposed, allowing one to register scattered radiation at different distances from sample surface to sphere ports. In this work, using the multilayer Monte Carlo method a numerical simulation of radiation propagation in a turbid medium was carried out under the conditions of detecting scattered radiation by moveable and stationary integrating spheres. Random errors were added to the direct problem solution in order to simulate experimental inaccuracies. The corresponding inverse problems were solved and the errors arising in the determination of optical properties (albedo, scattering anisotropy, optical depth) were compared in the cases of moveable and fixed spheres. It is shown that the same error in the inverse problem input data leads to smaller root-mean-square deviation from the true values when reconstructing albedo and anisotropy with the moveable spheres method, compared to the classical stationary spheres approach.

Author(s):  
Alexey Andreevich Selifonov ◽  
◽  
Olga Anatolyevna Zyuryukina ◽  
Ekaterina Nikolaevna Lazareva ◽  
Julia Sergeevna Skibina ◽  
...  

Knowledge of the optical properties of biological tissues is important for the development of optical diagnostics, photodynamic and photothermal therapy of various diseases. However, despite the significant number of works devoted to the determination of the optical properties of tissues, the optical properties of human gums and dentin remain currently poorly understood. In this work, we experimentally studied the optical properties of human gums and dentin in the spectral range from 350 nm to 800 nm. Basing on measured diffuse reflection and total transmission spectra and using the Inverse Adding Doubling (IAD) method, the spectral dependences of absorption and scattering coefficients of the studied tissue samples were calculated.


2017 ◽  
Author(s):  
Misako Iwamoto ◽  
Norihiro Honda ◽  
Katsunori Ishii ◽  
Kunio Awazu

1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


2019 ◽  
Vol 15 (2) ◽  
pp. 121-129
Author(s):  
Zhi Rao ◽  
Bo-xia Li ◽  
Yong-Wen Jin ◽  
Wen-Kou ◽  
Yan-rong Ma ◽  
...  

Background: Imatinib (IM) is a chemotherapy medication metabolized by CYP3A4 to Ndesmethyl imatinib (NDI), which shows similar pharmacologic activity to the parent drug. Although methods for determination of IM and/or NDI have been developed extensively, only few observations have been addressed to simultaneously determine IM and NDI in biological tissues such as liver, kidney, heart, brain and bone marrow. Methods: A validated LC-MS/MS method was developed for the quantitative determination of imatinib (IM) and N-desmethyl imatinib (NDI) from rat plasma, bone marrow, brain, heart, liver and kidney. The plasma samples were prepared by protein precipitation, and then the separation of the analytes was achieved using an Agilent Zorbax Eclipse Plus C18 column (4.6 × 100 mm, 3.5 µm) with gradient elution running water (A) and methanol (B). Mass spectrometric detection was achieved by a triplequadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Results: This method was used to investigate the pharmacokinetics and the tissue distributions in rats following oral administration of 25 mg/kg of IM. The pharmacokinetic profiles suggested that IM and NDI are disappeared faster in rats than human, and the tissue distribution results showed that IM and NDI had good tissue penetration and distribution, except for the brain. This is the first report about the large penetrations of IM and NDI in rat bone marrow. Conclusion: The method demonstrated good sensitivity, accuracy, precision and recovery in assays of IM and NDI in rats. The described assay was successfully applied for the evaluation of pharmacokinetics and distribution in the brain, heart, liver, kidney and bone marrow of IM and NDI after a single oral administration of IM to rats.


2021 ◽  
Vol 11 (12) ◽  
pp. 5493
Author(s):  
Andrzej Gawor ◽  
Andrii Tupys ◽  
Anna Ruszczyńska ◽  
Ewa Bulska

Nowadays growing attention is paid to the control of fluorine content in samples of biological origin as it is present in the form of various biologically active organic compounds. Due to the chemically-rich matrix of biological tissues, the determination of fluorine becomes a very difficult task. Furthermore, a required complex sample preparation procedure makes the determination of the low contents of F by ion chromatography UV-Vis or ion-selective electrodes not possible. High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) seems to be the best option for this purpose due to its high robustness to matrix interferences, especially in the presence of carefully selected modifiers. In this work the possibility of quantitative F determination in water and animal tissues was examined by measuring the molecular absorption of gallium monofluoride (GaF) at 211.248 nm with the use of a commercially available HR-CS GF MAS system. Experimental conditions for the sensitive and precise determination of fluorine were optimized, including the time/temperature program as well as addition of gallium and modifier mixture in combined mode. Under these conditions the fluoride present in the sample was stabilized up to 600 °C, and the optimum vaporization temperature for GaF was 1540 °C. Palladium and zirconium deposited onto the graphite surface served as solid modifiers; sodium acetate and ruthenium modifiers were added directly to the sample. The limit of detection and the characteristic mass of the method were 0.43 μg/L and 8.7 pg, respectively. The proposed procedure was validated by the use of certified reference materials (CRMs) of lake water and animal tissue; the acceptable recovery was obtained, proving that it can be applied for samples with a similar matrix.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


Sign in / Sign up

Export Citation Format

Share Document