scholarly journals Effects of the Photoelectrochemical Etching in Hydrogen Fluride (HF) on the Optoelectrical Properties of Ga2O3

2021 ◽  
Vol 2112 (1) ◽  
pp. 012006
Author(s):  
Yuhua Hao ◽  
Xia Wang

Abstract Photoelectrochemical (PEC) etching is preferred to produce micro-and nano-structures for constructing Ga2O3-based electronics and optoelectronics, owing to its numerous controllable parameters. During the devices fabrications, beyond the wet chemical and dry (plasma) etching produces, PEC etching also leads to device degradations inordinately. In this work, the Ga2O3 thin film was PEC etched by hydrogen fluride (HF) etchant, and its opto-electric deep-ultraviolet sensing performances, including photo-to-dark current ratio, responsivity, and response speed, before and after PEC etching were analyzed and discussed.

2004 ◽  
Vol 808 ◽  
Author(s):  
Helinda Nominanda ◽  
Guojun Liu ◽  
Hyun Ho Lee ◽  
Yue Kuo

ABSTRACTP-channel thin film transistors (TFTs) with a copper (Cu) gate, source, and drain electrodes, prepared by a novel plasma etching process, have been fabricated and studied. The p-channel TFT characteristics are similar to those of the p-channel TFT with Mo electrodes. The influence of the channel length on the TFT characteristics, such as mobility, threshold voltage, and on-off current ratio, was examined. In spite of its low mobility, good device characteristics, such as ohmic contacts, were obtained. Most of the TFT characteristics, except the threshold voltage, were not affected by an extended high-temperature annealing step. The increase of the threshold voltage was probably due to the lack of a diffusion barrier between the gate Cu and the gate SiNx layer.


2015 ◽  
Vol 3 (9) ◽  
pp. 1942-1948 ◽  
Author(s):  
Lanchao Ma ◽  
Zhengran Yi ◽  
Shuai Wang ◽  
Yunqi Liu ◽  
Xiaowei Zhan

Thin film phototransistors based on a D–A copolymer of P(DPP4T-co-BDT) exhibited a photoresponsivity of up to 4.0 × 103 A W−1 and a photocurrent/dark-current ratio of 6.8 × 105 under white light irradiation with a low light intensity (9.7 μW cm−2).


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 194
Author(s):  
Maxime Bouschet ◽  
Ulises Zavala-Moran ◽  
Vignesh Arounassalame ◽  
Rodolphe Alchaar ◽  
Clara Bataillon ◽  
...  

In this paper, the influence of etching depth on the dark current and photo-response of a mid-wave infrared Ga-free T2SL XBn pixel detector is investigated. Two wet chemical etching depths have been considered for the fabrication of a non-passivated individual pixel detector having a cut-off wavelength of 5 µm at 150 K. This study shows the strong influence of the lateral diffusion length of a shallow-etched pixel on the electro-optical properties of the device. The lowest dark current density was recorded for the deep-etched detector, on the order of 1 × 10−5 A/cm2 at 150 K and a bias operation equal to −400 mV. The corresponding quantum efficiency was measured at 60% (without anti-reflection coating) for a 3 µm thick absorbing layer. A comparison of experimental results obtained on the two kinds of etched pixels demonstrates the need for a deep-etching process combined with efficient passivation for FPA manufacturing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1348
Author(s):  
Hiroki Nagai ◽  
Naoki Ogawa ◽  
Mitsunobu Sato

Deep-ultraviolet (DUV) light-transparent conductive composite thin films, consisting of dispersed multiwalled carbon nanotubes (MWCNTs) and SiO2 matrix composites, were fabricated on a quartz glass substrate. Transparent and well-adhered amorphous thin films, with a thickness of 220 nm, were obtained by weak ultraviolet (UV) irradiation (4 mW cm−2 at 254 nm) for more than 6 h at 20−40 °C onto the precursor films, which were obtained by spin coating with a mixed solution of MWCNT in water and Si(IV) complex in ethanol. The electrical resistivity of MWCNT/SiO2 composite thin film is 0.7 Ω·cm, and transmittance in the wavelength region from DUV to visible light is higher than 80%. The MWCNT/SiO2 composite thin film showed scratch resistance at pencil hardness of 8H. Importantly, the resistivity of the MWCNT/SiO2 composite thin film was maintained at the original level even after heat treatment at 500 °C for 1 h. It was observed that the heat treatment of the composite thin film improved durability against both aqueous solutions involving a strong acid (HCl) and a strong base (NaOH).


MRS Bulletin ◽  
1992 ◽  
Vol 17 (6) ◽  
pp. 52-57 ◽  
Author(s):  
S.T. Picraux ◽  
E. Chason ◽  
T.M. Mayer

Why are low-energy ions relevant to the surface processing of electronic materials? The answer lies in the overriding trend of miniaturization in microelectronics. The achievement of these feats in ultrasmall architecture has required surface processing capabilities that allow layer addition and removal with incredible precision. The resulting benefits of greater capacity and speed at a plummeting cost per function are near legendary.The ability of low-energy ions to enhance the precision of surface etching, cleaning, and deposition/growth processes (Figure 1) provides one basis for the interest in ion-assisted processes. Low-energy ions are used, for example, to enhance the sharpness of side walls in plasma etching and to improve step coverage by metal layers in sputter deposition. Emerging optoelectronic applications such as forming ridges for wave-guides and ultrasmooth vertical surfaces for lasers further extend piesent requirements, and low-energy ions again provide one tool to help in this area of ultraprecise materials control. Trends associated with the decreased feature size include the movement from wet chemical processing to dry processing, the continuing need for reductions in defect densities, and the drive toward reduced temperatures and times in process steps.How do the above trends focus interest on studies of low-energy ion-assisted processes? In current applications, these trends are driving the need for increased atomic-level understanding of the ion-enhancement mechanisms, for example, in reactive ion etching to minimize defect production and enhance surface chemical reactions.


2016 ◽  
Vol 4 (15) ◽  
pp. 3113-3118 ◽  
Author(s):  
Yue Teng ◽  
Le Xin Song ◽  
Wei Liu ◽  
Zhe Yuan Xu ◽  
Qing Shan Wang ◽  
...  

We successfully synthesized ZnGa2O4 microflowers self-assembled by hexagonal single-crystalline nanopetals. The ZnGa2O4 crystal exhibits improved solar-blind detection performance such as short response time, large light to dark current ratio and high photocurrent stability under zero bias voltage.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250021 ◽  
Author(s):  
SOUMEN DHARA ◽  
P. K. GIRI

In this work, we investigated the effect of organic CuPc coating on the surface of the ZnO NWs for possible improvement in the photoluminescence, photoconductivity and photoresponse. As a result of surface covering, the UV emission is enhanced by a factor of 7–8 while the green emission is reduced to half. Despite an increase in dark current after the CuPc covering, we obtained a significant improvement in the photocurrent and photoresponse rate. The photocurrent-to-dark current ratio is nearly doubled and the photoresponse process becomes faster for the ZnO/CuPc heterostructure. Improvements in the photoluminescence and photoconductivity for the ZnO/CuPc heterostructure are explained on the basis of modification of surface defects and interfacial charge transfer process.


Sign in / Sign up

Export Citation Format

Share Document