scholarly journals Rheological properties of powder blend for extrusion of ceramic-polymer filament used in 3D printing

2021 ◽  
Vol 2144 (1) ◽  
pp. 012005
Author(s):  
A Smirnov ◽  
E V Kuznetsova ◽  
N N Babushkin ◽  
Y O Pristinskiy ◽  
N W Solis Pinargote

Abstract The article presents the results of comparative studies of the rheological properties of the ceramic polymer blend of polylactide (PLA) filled with 50 %vol alumina to evaluate the possibility of obtaining extruded filament for 3D printing.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4130
Author(s):  
Svetlana A. Glukhova ◽  
Vyacheslav S. Molchanov ◽  
Boris V. Lokshin ◽  
Andrei V. Rogachev ◽  
Alexey A. Tsarenko ◽  
...  

Rapidly growing 3D printing of hydrogels requires network materials which combine enhanced mechanical properties and printability. One of the most promising approaches to strengthen the hydrogels consists of the incorporation of inorganic fillers. In this paper, the rheological properties important for 3D printability were studied for nanocomposite hydrogels based on a rigid network of percolating halloysite nanotubes embedded in a soft alginate network cross-linked by calcium ions. Particular attention was paid to the effect of polymer cross-linking on these properties. It was revealed that the system possessed a pronounced shear-thinning behavior accompanied by a viscosity drop of 4–5 orders of magnitude. The polymer cross-links enhanced the shear-thinning properties and accelerated the viscosity recovery at rest so that the system could regain 96% of viscosity in only 18 s. Increasing the cross-linking of the soft network also enhanced the storage modulus of the nanocomposite system by up to 2 kPa. Through SAXS data, it was shown that at cross-linking, the junction zones consisting of fragments of two laterally aligned polymer chains were formed, which should have provided additional strength to the hydrogel. At the same time, the cross-linking of the soft network only slightly affected the yield stress, which seemed to be mainly determined by the rigid percolation network of nanotubes and reached 327 Pa. These properties make the alginate/halloysite hydrogels very promising for 3D printing, in particular, for biomedical purposes taking into account the natural origin, low toxicity, and good biocompatibility of both components.


2020 ◽  
Vol 105 ◽  
pp. 105812 ◽  
Author(s):  
Zipeng Liu ◽  
Huan Chen ◽  
Bo Zheng ◽  
Fengwei Xie ◽  
Ling Chen

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 164 ◽  
Author(s):  
Lili Liu ◽  
Xiaopan Yang ◽  
Bhesh Bhandari ◽  
Yuanyuan Meng ◽  
Sangeeta Prakash

The 3D printing of foods is an emerging technique for producing unique and complex food items. This study presents the optimization of a new formulation for 3D printing foods on the basis of a complex system, which contains egg white protein (EWP), gelatin, cornstarch, and sucrose. The effects of different formulations on the rheological properties and the microstructure of the printing system were investigated. The formulation was optimized through response surface methodology, and a central composite design was adopted. The optimum formulation of the 3D mixture printing system was made of gelatin (14.27 g), cornstarch (19.72 g), sucrose (8.02 g), and EWP (12.98 g) in 250 mL of total deionized water with a maximum sensory evaluation score of 34.47 ± 1.02 and a viscosity of 1.374 ± 0.015 Pa·s. Results showed that the viscosity of the formulation correlated with the sensory evaluation score. The rheological properties and tribological behavior of the optimum formulation significantly differed from those of other formulations. A viscosity of 1.374 Pa·s supported the timely flow out of the printing material from the nozzle assisting 3D printability. Thus, 3D printing based on the egg white protein mixture system is a promising method for producing complex-shaped food objects.


Author(s):  
Cheng Zhu ◽  
Andrew J. Pascall ◽  
Nikola Dudukovic ◽  
Marcus A. Worsley ◽  
Joshua D. Kuntz ◽  
...  

In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.


2017 ◽  
Vol 66 (8) ◽  
pp. 1182-1189
Author(s):  
Uzma Khalil ◽  
Sajjad Haider ◽  
Muhammad Saleem Khan ◽  
Adnan Haider ◽  
Rawaiz Khan ◽  
...  

2014 ◽  
Vol 1027 ◽  
pp. 336-339
Author(s):  
Yu Li ◽  
Ping Yan Bian

This paper presents a novel strategy for fabricating hydrogel scaffold at ambient temperature by 3D printing supplemented with an ultrasonic spraying which involves crosslink reaction. The contradictory between the rheological properties and solidification of natural biological material for machinability and formability respectively at ambient temperature was solved. The gelled fraction and porosity were measured respectively to study the influence of crosslinking agent. The results showed that the two subjects appear a parabolic trend with the concentration of CaCl2 from 2% to 4%, but the tolerance of aperture decreases monotone.


Author(s):  
S. A. Bredihin ◽  
S. T. Antipov ◽  
V. N. Andreev ◽  
A. N. Martekha

In extrusion 3D printing, the rheological properties of food are critical to achieving quality printing. The aim of this study is to investigate potential correlations between the printability of food pastes and rheological characteristics. Potato and tomato puree were used as a model system. The rheological properties of mashed potatoes with the addition of potato starch and their behavior during 3D printing have been investigated. A correlation has been established between the formulation and manufacturability in 3D printing. Potato mass without starch had a low yield point, which affected the deformation and subsidence of the mass later. At the same time, the addition of 2% starch showed excellent extrudability and printability, that is, the ability to flow. Under these conditions, the printed objects had a smooth shape, good resolution, and could withstand shape over time. The object with the addition of 4% starch represented good shape retention but poor extrudability due to its high consistency index and toughness. The results obtained using tomato puree showed a linear correlation between ingredient flow stress, zero shear viscosity and corresponding print stability. The extrusion pressure required to extrude tomato paste increases linearly with increasing flow voltage. Modules of viscosity, elasticity, and zero shear rate turned out to be not linearly correlated with the extrusion force, which can be explained by the fact that these parameters reflect the rheological properties of the non-deforming state of the material, in contrast to the flow stresses.


2019 ◽  
Vol 104 (6) ◽  
pp. e10.1-e10 ◽  
Author(s):  
M Peak ◽  
K Baj ◽  
A Isreb ◽  
M Wojsz ◽  
I Mohammad ◽  
...  

BackgroundDespite regulatory advances, lack of age-appropriate formulations (AAFs) remains a challenge in paediatric practice. 3D-printing of oral dosage forms (ODFs) offers potential for AAFs for children. Optimising drug release from 3D-printed ODFs is an important technological step. Despite the abundant use of polyethylene oxides (PEOs) and their extensive use as an excipient, there have been no previous reports of applying this thermoplastic polymer species alone to fused deposition modelling (FDM) 3D printing. We assessed the impact of polymer molecular weight (MW) on the mechanical properties of the resultant filaments and their rheological properties. In the FDM 3D printing process, we also tested the effect of an innovative radiator-like design of the ODF on the acceleration of drug release patterns.MethodsBlends of PEO (MW: 100K, 200K, 300K, 600K or 900K) with PEG 6K (plasticiser) and a model drug (theophylline) were prepared by hot-melt extrusion. The resultant filaments were used as a feed for a FDM 3D printer to fabricate innovative designs of ODFs in a radiator-like geometry with inter-connected paralleled plates and inter-plate spacing of either 0.5mm, 1mm, 1.5mm or 2mm.ResultsVarying blends of PEO and PEG allowed formation of mechanically resistant filaments (maximum load at break of 357, 608, 649, 882, 781 N for filament produced with 100K, 200K, 300K, 600K or 900K, respectively). Filaments of PEO at a MW of 200K-600K were compatible with FDM 3D printing. Further increase in PEO MW resulted in elevated shear viscosity (>104 Pa.S) at the printing temperature and hindered material flow during FDM 3D printing. A minimum spacing (1 mm) between parallel plates of the radiator-like design was essential to boost drug release from the structure.ConclusionThese findings are essential in the development of next-generation personalised drug delivery doses using specialised polymer/polymer blends purposely optimised for FDM 3D printing.Disclosure(s)Nothing to disclose


Sign in / Sign up

Export Citation Format

Share Document