scholarly journals Evidence of perfect dislocation glide in nanoindented 4H-SiC

2013 ◽  
Vol 471 ◽  
pp. 012013 ◽  
Author(s):  
M Texier ◽  
A De Luca ◽  
B Pichaud ◽  
M Jublot ◽  
C Tromas ◽  
...  
Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


1987 ◽  
Vol 48 (C1) ◽  
pp. C1-175-C1-181
Author(s):  
S. AHMAD ◽  
M. OHTOMO ◽  
R. W. WHITWORTH

2013 ◽  
Vol 328 ◽  
pp. 679-683
Author(s):  
Ge Li ◽  
Xian Qin Hou ◽  
Zhi Min Liu

By molecular dynamics method, the tensile processes of nanosingle crystal copper with the crack front existence hole were simulated, and the effect of different hole size on crack propagation mechanism was analyzed. The results indicate that as the hole position remain unchanged, the hole diameter was more bigger, the atomic staggered and the crack tip deactivation were more obvious under tensile loads caused more dislocation glide appeared, meanwhile the number of slide-line was more and the trend of crack branch extend to hole position was more obvious.


2002 ◽  
Vol 17 (7) ◽  
pp. 1863-1870 ◽  
Author(s):  
Richard P. Vinci ◽  
Stefanie A. Forrest ◽  
John C. Bravman

Wafer curvature was used to study the thermal–mechanical behavior of 1-μm Cu thin films capped with a 100-nm-thick Si3N4 layer. These films were grown with either a Ta or a Si3N4 underlayer. Films on Si3N4 that were exposed to oxygen at the film/capping layer interface or at the center of the copper layer exhibited Bauschinger-like yielding at low stress. Stacks deposited under continuous vacuum, with a Ta underlayer, with carbon exposure at the upper surface of the copper film, or with oxygen exposure of only the underlayer did not demonstrate the anomalous yielding. Preferential diffusion of oxygen into copper grain boundaries or interfaces is the likely cause of the early yield behavior. Possible mechanisms include an increase in interface adhesion due to the presence of oxygen in solution and diffusion-induced dislocation glide as an additional driving force for dislocation motion at low applied stress.


2011 ◽  
Vol 55-57 ◽  
pp. 251-256
Author(s):  
Li Ma ◽  
Ting Zhang ◽  
Xiao Li ◽  
Zhao Hui Hu

Large-scale Ni-based super-alloy sheet has been prepared by electron beam physical vapor deposition (EB-PVD). Microstructure and the dislocation structures in the γ-γ′ double phase alloy under different temperature after tensile strain are studied with Transmission electron microscopy (TEM). The results show that the dislocation glide in single slip system and shearing mechanics, the dislocation climb with part shearing, absolute dislocation climb and cross slip, dislocation round are a course of the interacting degree between dislocation and γ′ phase gradually weakened under the tensile temperature from room temperature to high temperature, so as to decrease materials strength and increase plasticity.


1983 ◽  
Vol 17 (10) ◽  
pp. 1231-1235 ◽  
Author(s):  
P.G. Shewmon ◽  
G. Meyrick ◽  
S. Mishra ◽  
T.A. Parthasarathy

1991 ◽  
Vol 220 ◽  
Author(s):  
F. Namavar ◽  
J. M. Manke ◽  
E. P. Kvam ◽  
M. M. Sanfacon ◽  
C. H. Perry ◽  
...  

ABSTRACTThe objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.


1992 ◽  
Vol 38 (129) ◽  
pp. 245-256 ◽  
Author(s):  
Richard B. Alley

AbstractIce-flow modeling requires a flow law relating strain rates to stresses in situ, but a flow law cannot be measured directly in ice sheets. Microscopic processes such as dislocation glide and boundary diffusion control both the flow law for ice and the development of physical properties such as grain-size andc-axis fabric. These microscopic processes can be inferred from observations of the physical properties, and the flow law can then be estimated from the microscopic processes.A review of available literature shows that this approach can be imperfectly successful. Interior regions of large ice sheets probably have depth-varying flow-law “constants”, with the stress exponent,n, for power-law creep less than 3 in upper regions and equal to 3 only in deep ice;nprobably equals 3 through most of the thickness of ice shelves and ice streams.


Sign in / Sign up

Export Citation Format

Share Document