Analysis of the electrostatic field distribution in the hemispherical internal cell of radon monitors to estimate the collection efficiency of Po-218

2021 ◽  
Vol 16 (12) ◽  
pp. T12011
Author(s):  
Z. Fan ◽  
L. Xie ◽  
Y. Mo ◽  
F. Lin ◽  
T. Hu ◽  
...  

Abstract The collection efficiency of the hemispherical internal cell of radon monitors depends on many factors, with the distribution of the electric field and the relative humidity of the air being particularly important. COMSOL is used to simulate an internal cell with a plastic upper surface. Simulation results show a relatively uniform gradient of the electric field. Assuming that the electric field felt by the positively charged Po-218 ions in the internal cell is a linear function of its radial coordinate, a mathematical model of the collection efficiency is proposed. From this model, we obtained the following: 1) under the same neutralization rate and potential, the electric field gradient has little effect on the collection efficiency; 2) under the same neutralization rate, the collection efficiency increases with the potential on the cell wall. If the neutralization rate is small, then the potential value for the maximum collection efficiency is also small. At a relative humidity of 6%–10%, the collection efficiency saturates for values of the electric potential on the cell wall larger than 5 kV; 3) under the same potential, a large neutralization rate corresponds to reduced collection efficiency. At high potential, the collection efficiency is relatively less affected by the neutralization rate. Higher collection efficiency can be achieved under high potential and low humidity conditions. This study provides a theoretical foundation to design the internal cell of radon monitor for improving the collection efficiency of Po-218.

Author(s):  
Sangamithirai Subramanian Parimalam ◽  
Naoyuki Sotta ◽  
Takashi Kuromori ◽  
Toru Fujiwara ◽  
Masami Yokota Hirai ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 394
Author(s):  
Carlos A. Antolinez ◽  
Tobias Moyneur ◽  
Xavier Martini ◽  
Monique J. Rivera

Diaphorina citri Kuwayama (Hemiptera: Liviidae), commonly known as Asian citrus psyllid (ACP), is an invasive insect pest and the vector of the bacterium causing Huanglongbing (HLB), a lethal disease of citrus. In the United States, ACP has been established in all citrus-producing zones, all of which have different environmental conditions. The spread of ACP and, more importantly, HLB, has progressed differently depending on the state, with more rapid spread in Florida and Texas than in California. Climatic variations between the regions are likely a strong factor in the difference in the rate of spread. Despite this, it is unknown how the flight capacity of D. citri is influenced by high temperatures (>30 °C) and subsequently, low humidity experienced in California but not in Texas or Florida. In this study, by using a custom-made, temperature-controlled flight mill arena, we assessed the effect of high temperatures on the flight capacity and flight propensity of D. citri under low (20–40%) and high (76–90%) relative humidity conditions. We found that temperature and humidity influence the propensity to engage in short or long-distance flight events. Psyllids exposed to temperatures above 43 °C only performed short flights (˂60 s), and a high relative humidity significantly decrease the proportion of long flights (≥60 s) at 26 and 40 °C. The flight capacity for insects who engaged in short and long flights was significantly affected by temperature but not by humidity. For long flyers, temperature (in the 26–43 °C range) was negatively correlated with distance flown and flight duration. The most favorable temperature for long dispersion was 26 °C, with suboptimal temperatures in the range of 32–37 °C and the least favorable temperatures at 40 and 43 °C. In conclusion, D. citri is able to fly in a broad range of temperatures and efficiently fly in high and low humidity. However, temperatures above 40 °C, similar to those experienced in semi-arid environments like Southern California or Arizona, are detrimental for its flight capacity.


2020 ◽  
Author(s):  
Lei Qin ◽  
Qiang Sun ◽  
Jiani Shao ◽  
Yang Chen ◽  
Xiaomei Zhang ◽  
...  

Abstract Background: The effects of temperature and humidity on the epidemic growth of coronavirus disease 2019 (COVID-19)remains unclear.Methods: Daily scatter plots between the epidemic growth rate (GR) and average temperature (AT) or average relative humidity (ARH) were presented with curve fitting through the “loess” method. The heterogeneity across days and provinces were calculated to assess the necessity of using a longitudinal model. Fixed effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH.Results: An increased AT dramatically reduced the GR when the AT was lower than −5°C, the GR was moderately reduced when the AT ranged from −5°C to 15°C, and the GR increased when the AT exceeded 15°C. An increasedARH increased theGR when the ARH was lower than 72% and reduced theGR when the ARH exceeded 72%.Conclusions: High temperatures and low humidity may reduce the GR of the COVID-19 epidemic. The temperature and humidity curves were not linearly associated with the COVID-19 GR.


1957 ◽  
Vol 35 (5) ◽  
pp. 635-645 ◽  
Author(s):  
S. H. Z. Naqvi ◽  
H. M. Good

Conidia of Monilinia fructicola (Wint.) Honey were stored 1–10 months at temperatures of 5°, 25°, and 35 °C. and at constant relative humidities approximating 0, 15, 45, 75, and 90%. The germination of these spores was tested on potato dextrose agar containing 6% glucose, and curves of the percentage germination against time are given for representative samples.A pronounced delay in germination developed under all conditions of storage. The rate at which this delay developed was virtually independent of the storage temperature. All spore samples gave 100% germination after 3 months but only those at 5 °C. gave; any germination after 10 months. Storage in a relative humidity of 75% gave the best preservation of spore vigor, there being evidence in other conditions of either high humidity or low humidity injury. Of the nutrient solutions tested, glucose was the only one which gave substantially better germination than water, the effect being most marked on spores stored for some months at high humidity. With glucose, such spores sometimes germinated faster than those stored at intermediate humidities.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3174 ◽  
Author(s):  
Filiberto Ricciardella ◽  
Sten Vollebregt ◽  
Tiziana Polichetti ◽  
Pasqualina M. Sarro ◽  
Georg S. Duesberg

Humidity sensing is fundamental in some applications, as humidity can be a strong interferent in the detection of analytes under environmental conditions. Ideally, materials sensitive or insensitive towards humidity are strongly needed for the sensors used in the first or second case, respectively. We present here the sensing properties of multi-layered graphene (MLG) upon exposure to different levels of relative humidity. We synthesize MLG by chemical vapor deposition, as shown by Raman spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Through an MLG-based resistor, we show that MLG is scarcely sensitive to humidity in the range 30%–70%, determining current variations in the range of 0.005%/%relative humidity (RH) well below the variation induced by other analytes. These findings, due to the morphological properties of MLG, suggest that defective MLG is the ideal sensing material to implement in gas sensors operating both at room temperature and humid conditions.


1967 ◽  
Vol 6 (46) ◽  
pp. 505-514 ◽  
Author(s):  
J. Latham ◽  
C. P. R. Saunders

AbstractThe forceFrequired to separate two ice spheres was measured as a function of environmental temperatureT, relative humidityHand the strengthEof the external electric field in which the spheres were situated. It was found that over the entire attainable range ofTandH,Fincreased rapidly with increasingE. The increased adhesion was not accompanied by an increase in the rate of growth of the ice bridge between the two spheres and is explicable in terms of Davis’s (1964) calculations of the purely electrostatic forces between two spheres situated in an electric field. The experiments indicate that the rate of growth of snowflakes in a cloud by means of ice crystal aggregation will be markedly enhanced if the cloud is highly electrified.


Author(s):  
G. R. Evans ◽  
A. A. Watson

SynopsisAn investigation has been made of the condensation nuclei created by an electric field in a N2 – H2O mixture. These nuclei are distinguished by the fact that they induce condensation in a vapour which is only 4 per cent supersaturated.An explanation of these phenomena is found in the presence of nitrogen dioxide vapour, one of the products of reactions induced by the field, exerting a small pressure PNO2<1O−6 mm. Hg.The observations are consistent with the assumption that the nuclei are created in the reaction, 2NO2 + H2O ⇌ HNO2 + HNO3. It is believed that the reason for the requirement of a more than critically supersaturated vapour is that this must be the condition for the nuclei forming reaction to proceed.Once the nuclei have been created, any additional quantity of NO2 collected from the vapour forms acid molecules which promote condensation from a vapour which is not necessarily supersaturated.Drops formed by these nuclei contain a significant quantity of HNO2 + HNO3, so that, unlike drops of pure water, they are stable against reevaporation in a vapour, the relative humidity of which is <100 percent.


2017 ◽  
Vol 5 (7) ◽  
pp. 6046-6053 ◽  
Author(s):  
Gerard P. ‘t Lam ◽  
Jelmer A. van der Kolk ◽  
Akshita Chordia ◽  
Marian H. Vermuë ◽  
Giuseppe Olivieri ◽  
...  

Author(s):  
Hoyeon Choi ◽  
Yong Gap Park ◽  
Man Yeong Ha

Abstract In this paper, a numerical model was developed to describe the wire-plate electrostatic precipitator, commonly called electronic air cleaners. Electrostatic precipitator have been widely used to control particulate pollutants, which adversely affect human health. In this model, the complex interactions between fluid dynamics, electric fields and particle dynamics are considered. Therefore different approach methods are used in this study for each field, Eulerian reference frame was used for the fluid flow field and the electric field, Lagrangian reference frame used for the particles trajectories. In order to describe corona phenomena around high voltage electrode, electric field and ion current density field in electrostatic precipitator are numerically calculated using the iterative method for corona discharge model suggested by Kim (2010). The most important concept in electrostatic precipitator is the electric force applied to particles through the particle charging phenomena. The charge acquired by the particle in the corona region was obtained by combining the field charge, the diffusion charge and the time available for charging being the residence time of the particle in the corona region. In order to simulate more accurately, the charging model suggested by Lawless (1996) is used for the charging phenomena of particles by corona discharge because this model was designed to predict combination effect of diffusion charge and field charge. The diminution of particle concentration along the collection plate was derived from Deutsch’s theory, and migration velocity of the particle was developed from the condition that the magnitude of Coulomb force is equal to that of Stoke’s resistance force. This model is implemented by UDF in commercial software Fluent and validated with experimental and numerical results from literatures. CFD results had been compared with various experimental data obtained by Penney&Matick, Parasram and Kihm. Our results shows good agreement in terms of distributions of electric potential, current density, electrohydrodynamic flow pattern, and particle trajectories as well as corona current and collection efficiency. From this simulation, the effect of wire arrangement on electrostatic precipitator characteristics and particle charging are investigated. Both inline and staggered arrangements of wire electrode have been considered for fixed values of gas velocity equal to 2m/s. Applied voltage on wire electrode varies 6∼13kV and particle diameter is 4μm. For low voltage condition, staggered arrangement of wire electrode caused the turbulent effect so that collection efficiency increase more than inline arrangement. However, collection efficiency decrease in high voltage condition because electric force applied on particles passing between the wire electrodes is canceled out by both side wire electrodes.


Sign in / Sign up

Export Citation Format

Share Document