scholarly journals Characteristics of impregnated wood by nano silica from betung bamboo leaves

2021 ◽  
Vol 891 (1) ◽  
pp. 012019
Author(s):  
I Rahayu ◽  
A Pratama ◽  
W Darmawan ◽  
D Nandika ◽  
E Prihatini

Abstract Abstract, Sengon (Falcataria moluccana Miq.) as a fast-growing wood species that has low quality. Therefore, wood modification is needed to improve its wood qualities. The objective of this study was to analyse the effect of monoethylene glycol (MEG) and nano silica of betung bamboo leaves impregnation treatment on physical, mechanical properties and durability of sengon wood. 5-years-old Sengon wood from community forest, MEG and nano silica (average size = 436.16 nm) from betung bamboo leaves were used. The impregnation solutions were consisted of water treated (untreated), MEG, MEGSilika 0.5% and MEGSilika 1%. Impregnation process with 0.5 bar (60 minutes) vacuum and 2.5 bar (120 minutes) pressure. Physical properties (density and colour alteration), mechanical properties (Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and hardness) and durability against subterranean (Coptotermes curvignathus) attack. The results showed that the weight percent gain (WPG) and density of treated Sengon wood were increased as the nano silica concentration increased. While colour alteration (Δε) of treated samples were declining. Mechanical properties (MOE, MOR and hardness) were also improved. Durability based on laboratory tested against subterranean attack resulted that the percentage of termite mortality from the treated samples increased, while the percentage of weight loss decreased.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


Holzforschung ◽  
2020 ◽  
Vol 74 (12) ◽  
pp. 1135-1146
Author(s):  
Wanju Li ◽  
Minghui Liu ◽  
Hankun Wang ◽  
Yan Yu

AbstractIn order to improve dimensional stability and durability of wood, furfurylation of poplar and Chinese fir wood using newly developed furfuryl alcohol (FA) formulation combined with a common vacuum and pressure impregnation process was studied. An orthogonal experiment was designed to optimize the furfurylation process for the two wood species. The weight percent gain (WPG), equilibrium moisture content (EMC), anti-swelling efficiency (ASE), modulus of rupture (MOR), modulus of elasticity (MOE), as well as resistance to mold, decay fungi, and termites were evaluated. The results showed that nearly all the properties of the furfurylated wood could be improved to various extents. The average ASE of the furfurylated Chinese fir and poplar could reach as high as 80, 71, 92% and 79, 90, 75% in tangential and radial directions, and by volume, respectively, higher than most previously reported wood modification processes. Furthermore, the modified wood had excellent biological durability, with nearly 100% mold resistance, strong decay and termite resistance. Finally, processing parameters with 50% FA, 105–115 °C curing temperature, and 5–8 h curing time were therefore recommended for pilot-scale production of furfurylated poplar and Chinese fir wood based on range analysis.


2012 ◽  
Vol 557-559 ◽  
pp. 201-204 ◽  
Author(s):  
Wen Yong Liu ◽  
Yi Chen ◽  
Xi Tu ◽  
Yue Jun Liu ◽  
Xi Hai Hao

The thermoplastic processing and mechanical properties of starch and polyvinyl alcohol (PVA) composites were studied. Glycerol was chosen as the plasticizer and nano-silica (nano-SiO2) as the reinforcing agent of the starch/PVA composites. The results showed that the mechanical properties of the obtained starch/PVA blend were best when the glycerol content was 30% of starch and 20% of PVA, and the weight ratio of PVA and starch was 0.8 (wPVA/ wstarch= 0.8/1). After the addition of nano-SiO2, the mechanical properties of the starch/PVA blends were improved. When the weight percent of nano-SiO2was 2%, the mechanical properties of the SiO2/starch/PVA composite were most excellent. It was shown that the tensile strength was increased by 16% and the elongation increased by 72%. Moreover, it was confirmed by rheological measurements that nano-SiO2could interact with the composite materials, which results in the improvement of the mechanical strength of the starch/PVA composites.


2012 ◽  
Vol 496 ◽  
pp. 134-137 ◽  
Author(s):  
Wen Yong Liu ◽  
Yi Chen ◽  
Long Ouyang ◽  
Yue Jun Liu ◽  
Xi Hai Hao

The thermoplastic processing and mechanical properties of starch and polycaprolactone (PCL) composites reinforced by nano-silica (nano-SiO2) were studied. The results showed that the mechanical properties of the starch/PCL blends improved significantly with the increase of PCL. After the addition of nano-SiO2, the mechanical properties of the starch/PCL blends further improved. When the weight percent of nano-SiO2 was 1.8%, the mechanical properties of the SiO2/TPS/PCL composite were most excellent. By comparison with the starch/PCL (50/50) blends, the tensile strength of the SiO2/TPS/PCL composite with 1.8% SiO2 was increased by 20% and the elongation increased by 33%. Moreover, it was confirmed by rheological measurements that nano-SiO2 could interact with the composite materials, which results in the improvement of the mechanical strength of the TPS/PCL composites.


Holzforschung ◽  
2010 ◽  
Vol 64 (4) ◽  
Author(s):  
Zefang Xiao ◽  
Yanjun Xie ◽  
Holger Militz ◽  
Carsten Mai

Abstract Scots pine (Pinus sylvestris L.) sapwood was treated with glutaraldehyde (GA) and magnesium chloride (MgCl2) as a catalyst. The effects of treating conditions on the mechanical properties were examined. The weight percent gain (WPG) of thin veneer strips after leaching was highest at pH 4.0–4.5 and tensile strength measured in zero-span strength and finite-span strength decreased with decreasing pH in a range of 3.5–5.5. Sole treatment with MgCl2 also gradually decreased the tensile strength up to 25% with decreasing pH. At a fixed GA concentration (1.2 M), increasing MgCl2 concentration linearly diminished tensile strength. Conversely, increasing GA at a fixed MgCl2 concentration (1.5%) displayed the same effect, whereas in both cases zero-span strength loss was higher than finite span-strength loss. GA treatment of Scots pine sapwood stakes did not affect the modulus of rupture and the modulus of elasticity, but significantly reduced work to maximum load in bending and impact bending strength indicating embrittlement of wood. At the same time, compression strength increased with increasing WPG of GA. It is assumed that embrittlement caused by hydrolysis and crosslinking of cell wall polymers is compensated by enhanced compression strength thereby resulting in unchanged bending strength.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7139-7160
Author(s):  
Marzieh Sharifat ◽  
Davood Efhamisisi ◽  
Marie-France Thevenon ◽  
Asghar Tarmian ◽  
Mehdi Jonoobi

Furfural (F) cannot be easily polymerized like furfuryl alcohol, but it is an aldehyde that can react with urea (U) to make a polymeric network. The possibility of preparing F/U polymer along with an acidic catalyzer (maleic anhydride; M) was evaluated as a means to improve some selected properties of birch (Betula pendula) wood. The F+U/M resin was introduced into the wood with a double treatment technology. The first step involved dilution of F in water and methanol, and the second step was immersion in a U/M aqueous solution. The color of treated wood was darkened after resin curing from brown to a spectrum of black depending on the amount of loaded resin. The 60 to 80% of materials were converted to a non-leachable polymer based on the different formulations. The water absorption and volumetric swelling of the treated samples decreased with an increase in weight percent gain (WPG). The analysis of mechanical strength showed that treatment with F + U/M reduced to some extent the hardness and the impact bending of wood, while modulus of rupture, modulus of elasticity, and compression parallel to the grain with WPG were increased. The exposure of the samples to the accelerated weathering showed noticeable changes in color and roughness.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1243
Author(s):  
René Herrera Díaz ◽  
Oihana Gordobil ◽  
Pedro L. de Hoyos-Martinez ◽  
Anna Sandak ◽  
Jalel Labidi

Wood protection through chemical modification has received increasing interest over the last decades due to the environmental issues related to conventional biocides or protecting products. Consequently, a wide range of new treatments are developed in laboratories, which are later scaled up in the industrial environment. The main goal of modifying wood for indoor–outdoor application is to change its hydrophilic character, which in turn improves the intrinsic properties of the material and its durability against external factors. Wood can be esterified through its hydroxyl groups to obtain a hydrophobic and photo-stable material. Chemical modifications of Pinus radiata D. Don wood using hexanoyl chloride (P6), dodecanoyl chloride (P12), and stearoyl chloride (P18) were carried out at different concentrations. Esterification was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) technique combined with a discriminatory analysis. Weight percent gain was associated with the number of carbons of the aliphatic chain of the fatty acid (P6 > P12 > P18). Moreover, an increase of wood density as a consequence of modification treatments was observed. A substantial improvement of the hydrophobicity of wood was observed by dynamic contact angle measurements. In addition, the effect of ultraviolet (UV) radiation on color changes was reduced with the treatments. Furthermore, the P6 treatment presented acceptable values of modulus of elasticity (MOE) and modulus of rupture (MOR), being suitable for similar mechanical uses as non-treated pinewood. However, only treatments P12 and P18 enhanced thermal resistance of the pinewood in an oxidative atmosphere.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Sign in / Sign up

Export Citation Format

Share Document