scholarly journals Investigating the effect of PET plastic bottle strips on the strength and compressibility properties of clayey soil

2021 ◽  
Vol 894 (1) ◽  
pp. 012021
Author(s):  
J B Niyomukiza ◽  
A Bitekateko ◽  
J Nsemerirwe ◽  
B Kawiso ◽  
M Kiwanuka

Abstract The production of plastic bottles by the manufacturing industry has increased drastically over the last six decades across the globe. This rapid production has led to the generation of many waste plastic bottles, thus causing environmental pollution. About 180 tonnes of plastics are generated daily in Kampala, the capital city of Uganda, and around 50% is dumped into the Kiteezi landfill. Instead of putting pressure on the landfill, these plastic bottle wastes could be reused in stabilizing soils with poor engineering properties. The current study investigates the engineering properties of clayey soil reinforced with Polyethylene-terephthalate waste plastic bottle strips. In order to achieve the objectives of the study, the geotechnical and engineering properties of the soil reinforced with waste plastic bottle strips at 0.1, 0.2, 0.3 and 0.4% of the dry unit weight of the soil and non-stabilized soil were determined by conducting laboratory tests, such as particle size distribution, Atterberg limits, compaction test and California Bearing Ratio. The results revealed that the California Bearing Ratio of the soil reinforced with Polyethylene-terephthalate waste plastic bottle strips increased with the increase in the percentage of Polyethylene-terephthalate waste plastic bottle strips up to 0.3%. Beyond 0.3%, a drop in California Bearing Ratio was observed. It indicates that 0.3% Polyethylene-terephthalate waste plastic bottle strips is the optimum percentage for stabilizing low plasticity clayey soils.

10.17158/516 ◽  
2016 ◽  
Vol 19 (2) ◽  
Author(s):  
Ruben M. Ruiz ◽  
Renan P. Limjuco ◽  
Ebony Joseph B. Dolino ◽  
Michelle T. Llaban ◽  
Jeric N. Maratas ◽  
...  

<p>The necessity of improving the engineering properties of soil has been recognized; therefore, it is very important to find ways to enhance the weak soil, and using plastic waste is one promising way of doing it. The primary objective of this study is to compare the bearing capacity of the two types of soil (Clay and Item-201) in different concentrations of plastics, namely, at 0%, 0.5%, and 1%. Primarily, this investigation aimed to compare the California bearing ratio (CBR) of the two types of soil each with three concentrations of plastic. This study made use of the experimental design, specifically posttest design only to determine the effectiveness of using recycled waste plastic as soil bearing capacity enhancer. Findings revealed that in terms of the type of soil, there is a significant difference in California bearing ratio between clay and Item 201 (p-value &lt; 0.05). On the other hand, the California bearing ratio of the soil samples in various concentrations are not the same. As with the interaction between the type of soil and the waste plastic, a two-way ANOVA reveals that there is significant interaction between them that might have influenced California bearing ratio in the soil (p-value &lt; 0.05).</p><p> </p><p><strong>Keywords:</strong> Engineering, soil, waste plastic, soil bearing capacity enhancer, California bearing ratio, experimental, ANOVA, Davao City, Philippines.</p>


2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


2018 ◽  
Vol 162 ◽  
pp. 01017
Author(s):  
Kawther Al-Soudany

This paper evaluates the use of silica fumes as modification of fine-grained soil in order to alter undesirable properties of the native soil and create new useful soils. Silica fume as well as clay material, are used in changing the engineering properties to be compatible and satisfying this is due to their pozzolanic reactivity. The study aims to investigate the uses of these materials in geotechnical engineering and to improve the properties of soils. Four percentages of silica fumes were used in the present study, which is 0, 3, 5 and 7%. Classification, specific gravity, compaction characteristics, swell and swell pressure, CBR and compressive strength tests had been conducted on the prepared and modified soils. Results clarified that the silica fume increasing leads to decrease the plasticity index and liquid limit. Increasing in silica fume causes an increasing in plastic limit and optimum water contents while the maximum dry unit weight values decrease. The compressive shear strength, California Bearing Ratio (CBR), swell and swell pressure is improved by using silica fume so that silica fume can be considered as a successful material in improving the soil properties.


2018 ◽  
Vol 162 ◽  
pp. 01027
Author(s):  
Mohanned Waheed ◽  
Noor Asmael

Laboratory experiments are conducted to evaluate the effect of some non-traditional additives on the engineering properties of clayey soil, which show problematic phenomenon when used as a construction material. The conducted tests covered the influence of these additives on various parameters like consistency limits, compaction characteristics and CBR value. Two nontraditional stabilizers are selected in this study, polymers and phosphoric acid at three different percent which are (1%, 3% and 5%) of the dry soil weight. It is concluded that addition of the polymer to the clayey soil results in a slight increase in plastic limit while the liquid limit is not affected accompanied by a marginal decrease in the dry unit weight while the optimum moisture content remains unaffected. The addition of phosphoric acid to the clayey soil has no effect on its Atterberg limits. In general, it is observed that polymer is found to be ineffective as a stabilizer to improve clayey soils, especially in small amounts of about (3%). The phosphoric acid treated soil gained better improvement for all amounts of additive used. For (3%) acid treated soil the CBR is about (360%) compared to that of untreated soil, for that, it can be concluded that the improvement using phosphoric acid in the clay soils is a promising option and can be applied to solve the geotechnical stabilization problems.


2014 ◽  
Vol 22 (4) ◽  
pp. 35-44 ◽  
Author(s):  
Sujeet Kumar ◽  
Rakesh Kumar Dutta ◽  
Bijayananda Mohanty

Abstract Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-7
Author(s):  
Damilola A. Ogundare

The need to improve the strength and durability of subgrade soil in recent times has become imperative using stabilizing materials that can be sourced locally at no/or very low cost in other to reach their design life span before a major repair is required. This necessitates the improvement that could be achieved by stabilizing subgrade soil along Ede-Abeere road in Ede, Osun State with the Waste Plastic Bottle (WPB). The soil samples were collected at 1m depth at different portions along the road and stabilized with varying percentages of WPB. Laboratory tests conducted were sieve analysis, natural moisture content, specific gravity, Atterberg limit, compaction, California Bearing Ratio (CBR), and Unconfined Compressive Strength (UCS) Test. The CBR of the stabilized soil ranges from 1.28% to 12.20% with 2.5% WPB having the highest CBR value of 12.20% meeting the recommended value for unsoaked CBR of subgrade soils. However, the statistical model reliably adjudged that there is a significant relationship between the CBR values of subgrade soil-WPB mixture obtained. Thus, it is recommended that WPB at 2.5% can serve as a stabilizing material as it increases the CBR of the subgrade soil and as an effective method of disposing of WPB.


Clayey soil is one of the problematical soil around the world which causes distress to the construction that is built over clayey soil. Construction on expansive soil for geotechnical application causes major problems due to its poor shear strength characteristics apart from this continuous variation in volume change. soil stabilization is the process for modifying the engineering properties of soil. It is one of the most standard techniques used for the improvement of poor soil and also to make cost-effective way by making the best use of the locally existing material. For quite a while, cement is the well-known binder in soil stabilization, but it emits a large amount of CO2 , and energy depletion has started using some other materials or by-products to exchange cement for soil stabilization in full or in part. The growing volume of greenhouse gasses such as CO2 has also started explore into finding soil stabilization ecologically friendly resources. Dunite’s have a high amount of MgO, Al2O3 , SiO2 , and Fe2O3 could categorize this mineral as a soil stabilizing pozzolanic material. In present work experiment were conducted by addition of clayey soil with various percentage of Dunite powder (5%,10%,15%,20%) is added with the dry weight of soil. The unconfined compressive strength and California bearing ratio value is increased with the addition of Dunite power. The UCS value is increased from 198.88kPa to 247.29kPa over untreated soil as well as CBR value also increases from 4.61% for unstabilized soil to 8.86% for stabilized soil


Author(s):  
Nandy Candra ◽  
Whendy Trissan

Plastic bottle is waste that can be utilized. This research is used as additive in concrete mixtures can provide an alternative to Utilize the waste. Such as waste plastic bottles PET (Polyethylene Terephthalate). Optimizing the utilization of waste plastic bottles PET (Polyethylene Terephthalate) is expected to reduce the waste that pollutes the environment and provide added value.The fiber to be used as an additive in concrete mixtures. The fibers are mixed with fine aggregate, water and PPC cement type I gresik brands. Concrete mix design using SNI 03-2843-2000 about how making plans mixture of normal concrete. Tests using a cylinder measuring 10 cm x 20 cm, each variation using 10 samples consisting of five variations (0%, 5%, 10%, 15%, 20%) and tested at 14 and 28 days in Laboratory Studies Engineering Education building the Faculty of Education University of Palangkaraya.Average compressive strength at 14 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 23:02 MPa; 12:35 MPa; 10.49 MPa; 9.6 MPa; 8.83 MPa. Average compressive strength at 28 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 25.77 MPa; 13.62 MPa; 11.84 MPa; 10.8 MPa; 10:28 MPa


2019 ◽  
Vol 26 (3) ◽  
pp. 43-50
Author(s):  
Amina A. Khalil ◽  
Mohammed N J Alzaidy ◽  
Zeena A. Kazzaz

To investigate and understand the effect of lime on the engineering properties of an expansive clayey soil, 4% lime by weight of the dry soil have been added. The stabilized soil specimens were subjected to unconfined compression, swelling potential and pH value tests. Also, a finite element analyses using PLAXIS-2D software were conducted. The studied parameters include the footing size and thickness of lime stabilized soil, and then compared with the natural soil. It was proved that lime content and curing duration had a significant effect on the engineering properties of lime-treated soil. The curing duration had significantly enhanced the strength properties of the lime stabilized soil specimens, where, unconfined compressive strength has significantly improved. Also, the pH value was decreased with increasing curing durations. Moreover, it was found that the swelling potential of the lime-treated soil specimens was reduced by lime addition and increasing of the curing duration. The results of numerical analysis show that the stress-settlement behaviour and ultimate bearing capacity of footing can be considerably enhanced as the thickness of lime-treated increases, and the influence of footing width seems to be insignificant.


2020 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Joseph Ejelikwu Edeh

The functionality of a highway pavement is often judged by the quality and engineering properties of the soil-pavement structures and the materials used to improve the properties of these underlying soils. In this study, crushed concrete waste and carbide waste, whose associated disposal problems constitute environmental hazard, were used for the stabilization of clayey soil using British Standard heavy (Modified Proctor) compaction energy, and used as highway construction material. The various mixes were subjected to particles size analyses, specific gravity, moisture content, Atterberg limits, compaction characteristics, California bearing ratio, unconfined compressive strength test triaxial and water absorption tests. The test results show that the properties of the clayey soil improved with its stabilization with crushed concrete and carbide wastes. The maximum dry density decreased from 1.93 to 1.29 Mg/m3 with corresponding increase in optimum moisture content from 6.0 to 16.6 %, as carbide waste content increased, and crushed concrete waste and clayey soil contents of the mixtures decreased. The maximum California bearing ratio value of 55.01 % (unsoaked and soaked for 24 h) recorded for 25%CS + 75% (75%CCW + 25%CW) mix can be used as subbase material in flexible pavement construction. Further work may assess resilient modulus of this material under cyclic load.


Sign in / Sign up

Export Citation Format

Share Document