scholarly journals Possibilities of Water Storage in Drainage Channel System of the Upper Rye Island

2021 ◽  
Vol 906 (1) ◽  
pp. 012110
Author(s):  
Andrej SoltŠsz ◽  
Dana Baroková ◽  
Michaela Cerveftanská ◽  
Jakub Mydla ◽  
Lea Cubanová ◽  
...  

Abstract Consequently, to the construction and operation at water power plant Gabcíkovo came to changes in water regime in adjacent area. The power canal of the Gabcíkovo power plant cut the upper parts of the drainage system in Danube Lowlands. Groundwater level changes have occurred in the vicinity of the Hrušov reservoir what caused changes in discharge and water level regime of the drainage channels. Presented contribution deals with theoretical and practical background of the water management in agriculturally exploited regions, especially with the possibility to create and store enough water for irrigation in the channels of one part of the Rye Island. It was therefore necessary to measure and calculate the capacity of given channels as well as the volume of water stored by means of improved operation on hydraulic structures or by construction of new structures. Rye Island belongs to an area where agriculture in the growing season, especially due to the irregular distribution of precipitation, very often suffers from drought. The probability of ensuring at least 10 mm of precipitation in one decade of the growing season is only 50% and the probability of 30 mm of precipitation is only 20%. It follows that without irrigation the moisture for vegetation cover is not ensured. But there can be years with heavy rainfall and then there is no need to irrigate. Rye Island is the warmest area of the Slovakia where the vegetation period is also the longest. Most of it belongs to the area of corn production type. The irrigation economy is therefore profitable. However, the technology of implementation and the effort to introduce large-scale irrigation as soon as possible led to the conclusion that this issue should be considered from several points of view.

2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


2020 ◽  
Vol 140 (6) ◽  
pp. 531-538
Author(s):  
Kotaro Nagaushi ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Atsushi Sakahara ◽  
...  

2013 ◽  
Vol 8 (3-4) ◽  
pp. 342-349
Author(s):  
L. Andjelic ◽  
M. Pavlovic ◽  
B. Babovic

The thermal power plant ‘Morava’, with a productive force of 125 MW, is located on the right bank of the River Velika Morava, near the city of Svilajnac, Serbia. This power plant uses coal for production. Ash and slag from the coal are burned and go to a landfill by hydraulic transport. The ratio of the liquid/solid mixture is 10:1. Towards the reduction of water quantity taken from the Velika Morava river for hydraulic transport, it's provided to build a water recirculation system for overflow and drainage water from landfill to power plant. In this paper, the results of the hydraulic study of water balance in landfill is shown. The goal of this study is to assess the water quantity in landfill, which can then be reused for hydraulic transport. For dimensioning of drainage system and overflow building on landfill, it was necessary to perform detailed analysis of rainfall and filtration throw landfill. With results of water quantity in drainage system, and overflow water, all parts of the recirculation system of water, from landfill to power plant, was performed. Also, in this paper are the data of hydraulic transport of mixture of water and ash/slag.


2012 ◽  
Vol 608-609 ◽  
pp. 1120-1126 ◽  
Author(s):  
De Shun Wang ◽  
Bo Yang ◽  
Lian Tao Ji

A static frequency converter start-up control strategy for pumped-storage power unit is presented. And rotor position detecting without position sensor is realized according to voltage and magnetism equations of ideal synchronous motor mathematics model. The mechanism and implementation method of initial rotor position determination and rotor position estimation under low frequency without position sensor are expounded and validated by simulations. Based on the mentioned control strategy, first set of a static frequency converter start-up device in China for large-scale pumped-storage unit is developed, which is applied to start-up control test in the 90 MW generator/motor of Panjiakou Pumped-storage Power Plant. Test results show that rotor position detecting, pulse commutation, natural commutation, and unit synchronous procedure control of static start-up are all proved. The outcomes have been applied in running equipment, which proves the feasibility of mentioned method.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


2021 ◽  
Vol 7 (1) ◽  
pp. 47-54
Author(s):  
Jinjie Lin ◽  
Yong Li ◽  
Sijia Hu ◽  
Qianyi Liu ◽  
Jing Zhang ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


Sign in / Sign up

Export Citation Format

Share Document