scholarly journals Research on phenol complex infrared dried grape pomace

2021 ◽  
Vol 937 (2) ◽  
pp. 022097
Author(s):  
Mikhail Sergeev ◽  
Dmitry Yermolin ◽  
Alexey Zavaliy ◽  
Galina Yermolina ◽  
Dmitry Rudoy

Abstract Studies have shown that grape pomace is a promising raw material for the functional drinks production with an increased phenols mass concentration. At the same time, the highest mass concentration of phenols was determined in red frape varities pomace. The highest mass concentrations of flovanols were found in white pomace, flavonols in muscat, phenolic acids in red pomace. The mass concentration of oligomeric forms in phenols does not differ significantly in all samples. The highest mass concentration of polymers in phenols is determined in the red pomace. The anthocyanin profile corresponded to the Western European ecological-geographical group grape varieties. Highest mass concentration was determined monoglycoside malvidin.

2018 ◽  
Vol 12 (2) ◽  
Author(s):  
V. Derevenko ◽  
G. Kasyanov ◽  
L. Pylypenko

Grape pomace contains a complex of valuable and biologically active compounds. Drying is one of the main ways of microbiological stabilisation and preservation of the nutritional value of this secondary raw material. Kinetic parameters of dehydration of grape pomace from different industrially cultivated and processed varieties have been studied, namely, of the red grape varieties Cabernet and Shiraz, and of the white varieties Chardonnay and Riesling. Dependences of the moisture content in the process of convective drying at different drying agent rates have been obtained at a regulated temperature of 80 °C. The components of such an important technological parameter as the drying time have been determined. These components include the duration of the constant drying rate period Φ2 and the time of the decreasing drying rate period Φ1 of the two zones of the second drying period. The coefficients of the dehydration process have been calculated depending on the type of grape pomace processing. It has been shown that the discrepancy between the calculated and experimental results does not exceed ±3.9%. The specific features of the moisture yield of the pomace have been revealed, the pomace being viewed as a complex heterogeneous system with colloidal and capillary-porous properties. There are different types of its technological preparation: it can be fresh, frozen, fermented, and this makes for the fact that the drying time and drying rate may differ by 1.32–1.46 times. High preservation of valuable properties of grape pomace has been shown. Thus, the concentration of biologically active substances (BAS) in the total polyphenolic compounds is up to 69% of their initial concentration in the grape pomace samples, and the microbial contamination of the samples after drying is reduced by 51–82% of their initial contamination.


2011 ◽  
Vol 76 (7) ◽  
pp. M515-M521 ◽  
Author(s):  
Osman Sagdic ◽  
Ismet Ozturk ◽  
Mustafa Tahsin Yilmaz ◽  
Hasan Yetim

Author(s):  
Н.Н. КОРНЕН ◽  
С.А. КАЛМАНОВИЧ ◽  
Т.А. ШАХРАЙ ◽  
В.И. МАРТОВЩУК ◽  
Е.В. КУЗЬМИНОВА ◽  
...  

Проведена сравнительная оценка эффективности антиоксидантного и гепатопротекторного действия пищевых добавок, полученных из выжимки винограда белых сортов по различным технологиям, в экспериментах на лабораторных животных. Установлено, что пищевая добавка «Порошок виноградный» (ПВ), полученная из выжимки винограда белых сортов по разработанной технологии, позволяет, по сравнению с контрольным образцом пищевой добавки, в большей степени снизить в сыворотке крови содержание продуктов перекисного окисления липидов – малонового диальдегида, диеновых коньюгатов и кетодиенов, что свидетельствует о более высокой эффективности антиоксидантного действия ПВ на организм животных, обусловленной большим содержанием микронутриентов с антиоксидантными свойствами. Добавка ПВ проявляет более высокую эффективность гепатопротекторного действия, заключающуюся в значительном снижении уровня активности аланинаминотрансферазы в сыворотке крови, по сравнению с контрольным образцом добавки. Comparative evaluation of the effectiveness of antioxidant and hepatoprotective action of food additives which obtained from grape pomace white varieties for various technologies, was carried out in experiments on laboratory animals. It is established that the food additive “Grape Powder” (GP), obtained from the pomace of white grape varieties by the developed technology, allows, in comparison with the control sample of the food additive, to reduce the content of lipid peroxidation products in the serum to a greater extent – Malon dialdehyde, diene conjugates and ketodienes, which indicates a higher efficiency of antioxidant action of GP on the organism of animals, due to the high content of micronutrients with antioxidant properties. The additive GP shows a higher efficiency of hepatoprotective action, which consists in a significant reduction in the level of alanine aminotransferase activity in the blood serum, compared to the control sample of the additive.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 685
Author(s):  
Fanxiu Li ◽  
Hengyuan Wang ◽  
Xuezhong Wang ◽  
Zhigang Xue ◽  
Liqin Duan ◽  
...  

Atmospheric carbonyls (aldehyde and ketone compounds) can be precursors for ozone and PM2.5, and they play an essential role in atmospheric chemistry. Linfen is a basin between mountains on the east and west, and there are many coking plants on the north and south sides of its urban area. The special topography and unfortunate industrial layout have frequently contributed to serious air pollution in Linfen. In order to investigate the pollution characteristics of atmospheric carbonyls in winter in urban Linfen, the carbonyl compounds were collected from the Municipal Committee site (MC) and the Yaowangtai site (YWT) from 16 to 25 January 2019, and their concentrations were analyzed by a high performance liquid chromatography-ultraviolet detector (HPLC-UV). The results show that formaldehyde, acetaldehyde, and acetone were the most abundant compounds, accounting for more than 70% of the total mass concentration of carbonyls in urban Linfen. Levels of these three carbonyls increased during the morning and evening traffic rush hours. The mass concentration of formaldehyde at both sites reached peak values at around noon (10:00–14:00). In addition, the mass concentrations of formaldehyde, acetaldehyde, and acetone were positively correlated with CO mass concentrations, whereas only formaldehyde and acetaldehyde were positively correlated with temperature. Therefore, atmospheric formaldehyde in urban Linfen’s winter mainly came from vehicle exhaust emissions and the secondary generation of photochemical reactions. Most of the acetaldehyde came from vehicle exhaust emissions, and photochemical reactions also partially contributed to it. For acetone, vehicle exhaust emissions were the main source. In addition, coking industry emissions from Northern Linfen′s Hongtong County may also have contributed to the atmospheric carbonyls in the urban area of Linfen. For the first time, this study found that formaldehyde showed different behavior to acetaldehyde and acetone; that is, the nighttime decrease in formaldehyde mass concentration was greater than that of acetaldehyde and acetone.


2020 ◽  
Vol 66 (1) ◽  
pp. 1-8
Author(s):  
Izabela Szymborska-Sandhu

SummaryIntroduction: Bastard balm grows in forests, in central and southeastern part of Europe. The herb of this species is rich in phenolics, mainly flavonoids, phenolic acids and coumarins. The plant is used in traditional European medicine, in digestive problems and for aromatizing tobacco and alcohol products.Objective: The purpose of this study was to determine the influence of shading on bastard balm development and the accumulation of phenolics in its herb, with special respect to coumarin as a quality marker of this raw material.Methods: The plants were cultivated in full sunlight, in 30% and 50% shade provided by shading nets. The herb was harvested from plants in the third year of vegetation, at four subsequent developmental stages and then subjected to chemical evaluation. In the raw material, the total contents of flavonoids, phenolic acids and coumarins was determined. The content of coumarin was analyzed using HPLC-DAD.Results: Plants grown in 30% shade produced the highest number of flowers and seeds. They produced the highest mass of herb at the beginning of the seed-setting stage. The plants grown in full sunlight revealed the highest content of flavonoids and phenolic acids, especially during flowering and at the beginning of the seed-setting stage. The mass of herb obtained by plants cultivated at deep (50%) shade was the lowest, however, the content of coumarin in these plants was the highest.Conclusion: The influence of shade on bastard balm was expressed by the herb mass and coumarin content increment. The plants thrived best in 30% shade, both in terms of flowering abundance and the mass of herb, whereas those from 50% shade were the richest in coumarin.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1262 ◽  
Author(s):  
Anna Oniszczuk ◽  
Kamila Kasprzak ◽  
Agnieszka Wójtowicz ◽  
Tomasz Oniszczuk ◽  
Marta Olech

Buckwheat is a generous source of phenolic compounds, vitamins and essential amino acids. This paper discusses the procedure of obtaining innovative gluten-free, precooked pastas from roasted buckwheat grains flour, a fertile source of natural antioxidants, among them, phenolic acids. The authors also determined the effect of the extruder screw speed and the level of moisture content in the raw material on the quantity of free phenolic acids. The qualitative and quantitative analysis of phenolic acids in pasta was carried out using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The chromatographic method was validated. For extracts with the highest total content of free phenolic acids and unprocessed flour from roasted buckwheat grain, the TLC-DPPH test was also performed to determine the antioxidant properties of the tested pasta. The level of moisture in the raw material had an impact on the content of phenolic acids. All pastas made from buckwheat flour moistened up to 32% exhibited a higher total content of free phenolic acids than other mixes moistened to 30 and 34% of water.


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3473 ◽  
Author(s):  
Barbara Krochmal-Marczak ◽  
Tomasz Cebulak ◽  
Ireneusz Kapusta ◽  
Jan Oszmiański ◽  
Joanna Kaszuba ◽  
...  

The aim of the study was the qualitative and quantitative analysis of the bioactive components present in the leaves of 9 sweet potato cultivars grown in the moderate climate in Poland, which were harvested at different growth stages according to the BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) scale (14, 51, 89). It was found that sweet potato leaves contained 7 polyphenolic compounds, including 5 chlorogenic acids—neochlorogenic acid (5-CQA), chlorogenic acid (3-CQA), 4-cryptochlorogenic acid (4-CQA), 34-di-O-caffeoylqunic acid (3,4-CQA), 3,5-di-O-caffeoylqunic acid (3,5-CQA)—and 2 flavonoids, quercetin-3-O-galactoside (Q-3-GA) and quercetin-3-O-glucoside (Q-3-GL). Their content depended on the genotype of the examined cultivars and on the stage of leaf development. The mean content of the identified polyphenolic compounds in the examined cultivars ranged from 148.2 to 14.038.6 mg/100 g−1 DM for the leaves harvested at growth stage 14 according to the BBCH scale. In the case of leaves harvested at BBCH stage 51, the concentration of polyphenolic compounds ranged from 144.76 to 5026.8 mg/100 g−1 DM and at BBCH stage 89 from 4078.1 to 11.183.5 mg/100 g−1 DM. The leaves of the Carmen Rubin cultivar collected at stage 14 contained the highest amount of polyphenolic compounds, while Okinava leaves had the highest amount of these compounds at stage 51. The highest content of polyphenolic compounds in leaves at BBCH growth stage 89 was found in the Radiosa variety. The highest concentration levels were found for 3-CQA at all stages of leaf development. Significant correlations between polyphenol content and antioxidant activity measured by 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing/antioxidant power (FRAP) were found. The results of this experiment revealed that the growth stages and genetic properties of cultivars have a very significant influence on the content of phenolic acids and flavonols in sweet potato leaves. The results are innovative and can have a practical application, as the knowledge of the content of the substances under study makes it possible to determine the optimal management practice of sweet potato leaf harvest in order to obtain more top-quality raw material.


2011 ◽  
Vol 11 (5) ◽  
pp. 2245-2279 ◽  
Author(s):  
U. Schumann ◽  
B. Weinzierl ◽  
O. Reitebuch ◽  
H. Schlager ◽  
A. Minikin ◽  
...  

Abstract. Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm−3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m−3. The Falcon flew in ash clouds up to about 0.8 mg m−3 for a few minutes and in an ash cloud with approximately 0.2 mg m−3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m−3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240–1600) kg s−1. The volcano induced about 10 (2.5–50) Tg of distal ash mass and about 3 (0.6–23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.


Sign in / Sign up

Export Citation Format

Share Document