scholarly journals Javan langur responses to the repeated exposure of ground survey and novel stimulus, unmanned aerial vehicles

2021 ◽  
Vol 948 (1) ◽  
pp. 012006
Author(s):  
D A Rahman ◽  
Y Setiawan ◽  
A A A F Rahman ◽  
T R Martiyani

Abstract The use of small Unmanned Aerial Vehicles (UAVs; a.k.a “drones”) for ecological monitoring, conservation campaign, and management is increasing enormously. UAVs operate at low altitudes (<150 m) and in any terrain; thus, they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. Both policy-makers and practitioners require data about the potential impacts of UAVs on natural biota, but few studies exist. The research aims to compare behavioral responses from ground-based surveys vs. UAVs flights. Moreover, we conducted two experiments of UAVs overflights, specifically aiming to assess the responses of Trachypithecus auratus. Between January and March 2021, we conducted 24 UAVs flight approaches and 12 ground surveys at Mount Halimun-Salak National Park, Indonesia. We applied generalized linear mixed-effects models and Kruskal-Wallis tests to 364 behavioral scores obtained from two independent observers. When directly compared, the detection time was higher using UAVs (χ2 = 38.50; df= 1; p < 0.050), and behavioral responses by Javan langur to UAVs overflights at > 30 m were different from responses to ground surveys were more intense. Finally, we suggest data-driven best practices for UAVs use and the design of future UAVs-wildlife response studies.

2021 ◽  
Vol 8 ◽  
Author(s):  
Douglas J. Krause ◽  
Jefferson T. Hinke ◽  
Michael E. Goebel ◽  
Wayne L. Perryman

Unoccupied aerial systems (UAS) have become common tools for ecological monitoring and management. However, UAS use has the potential to negatively affect wildlife. Both policy makers and practitioners require data about the potential impacts of UAS on natural biota, but few studies exist and some of the published results conflict. We conducted two experiments to assess the responses of chinstrap penguins (Pygoscelis antarcticus), Antarctic fur seals (Arctocephalus gazella), and leopard seals (Hydrurga leptonyx) to UAS overflights. First, to provide a baseline for assessing disturbance from UAS operations, we compare behavioral responses from UAS flights to those from traditional, ground surveys. Second, to inform users and policy makers about preferred flight methods, we assess behavioral and physiological responses to UAS flown at specific altitudes, during different stages of breeding chronology, and with other site factors. Between January 2017 and March 2018 we conducted 268 UAS flight approaches and 36 ground-based surveys at Cape Shirreff, Antarctic Peninsula. We applied generalized linear mixed effects models and Kruskal-Wallis tests to 10,164 behavioral scores obtained from three independent observers. When directly compared, behavioral responses by all species to UAS overflights at 30 m were not different from control periods, while responses to ground surveys were significantly more intense. Behavioral responses generally increased as UAS flew lower, and for penguins those increases intensified as the breeding season progressed (i.e., guard and molt stages). We argue that results from UAS wildlife response studies need to be assessed relative to the impacts of alternative methods, and within the ecological context of the target species. Finally, we suggest data-driven best practices for both UAS use and for the design of future UAS-wildlife response studies.


Author(s):  
Aya Hussein ◽  
Sondoss Elsawah ◽  
Hussein A. Abbass

Objective This work aims to further test the theory that trust mediates the interdependency between automation reliability and the rate of human reliance on automation. Background Human trust in automation has been the focus of many research studies. Theoretically, trust has been proposed to impact human reliance on automation by mediating the relationship between automation reliability and the rate of human reliance. Experimentally, however, the results are contradicting as some confirm the mediating role of trust, whereas others deny it. Hence, it is important to experimentally reinvestigate this role of trust and understand how the results should be interpreted in the light of existing theory. Method Thirty-two subjects supervised a swarm of unmanned aerial vehicles (UAVs) in foraging missions in which the swarm provided recommendations on whether or not to collect potential targets, based on the information sensed by the UAVs. By manipulating the reliability of the recommendations, we observed changes in participants’ trust and their behavioral responses. Results A within-subject mediation analysis revealed a significant mediation role of trust in the relationship between swarm reliability and reliance rate. High swarm reliability increased the rate of correct acceptances, but decreased the rate of correct rejections. No significant effect of reliability was found on response time. Conclusion Trust is not a mere by-product of the interaction; it possesses a predictive power to estimate the level of reliance on automation. Application The mediation role of trust confirms the significance of trust calibration in determining the appropriate level of reliance on swarm automation.


2019 ◽  
Vol 11 (10) ◽  
pp. 1180 ◽  
Author(s):  
Todd M. Buters ◽  
Philip W. Bateman ◽  
Todd Robinson ◽  
David Belton ◽  
Kingsley W. Dixon ◽  
...  

The last decade has seen an exponential increase in the application of unmanned aerial vehicles (UAVs) to ecological monitoring research, though with little standardisation or comparability in methodological approaches and research aims. We reviewed the international peer-reviewed literature in order to explore the potential limitations on the feasibility of UAV-use in the monitoring of ecological restoration, and examined how they might be mitigated to maximise the quality, reliability and comparability of UAV-generated data. We found little evidence of translational research applying UAV-based approaches to ecological restoration, with less than 7% of 2133 published UAV monitoring studies centred around ecological restoration. Of the 48 studies, > 65% had been published in the three years preceding this study. Where studies utilised UAVs for rehabilitation or restoration applications, there was a strong propensity for single-sensor monitoring using commercially available RPAs fitted with the modest-resolution RGB sensors available. There was a strong positive correlation between the use of complex and expensive sensors (e.g., LiDAR, thermal cameras, hyperspectral sensors) and the complexity of chosen image classification techniques (e.g., machine learning), suggesting that cost remains a primary constraint to the wide application of multiple or complex sensors in UAV-based research. We propose that if UAV-acquired data are to represent the future of ecological monitoring, research requires a) consistency in the proven application of different platforms and sensors to the monitoring of target landforms, organisms and ecosystems, underpinned by clearly articulated monitoring goals and outcomes; b) optimization of data analysis techniques and the manner in which data are reported, undertaken in cross-disciplinary partnership with fields such as bioinformatics and machine learning; and c) the development of sound, reasonable and multi-laterally homogenous regulatory and policy framework supporting the application of UAVs to the large-scale and potentially trans-disciplinary ecological applications of the future.


2021 ◽  
Vol 280 ◽  
pp. 09017
Author(s):  
Anastasiia Turevych ◽  
Svitlana Madzhd ◽  
Larysa Cherniak ◽  
Anatoliy Pavlyuk ◽  
Vincent Ojeh

The problem of emergencies will not leave humanity as long as it exists, and therefore it is necessary to at least create conditions under which it is possible to reduce the risks of injuries, diseases and deaths of people who are in the emergency zone. This can be achieved by raising awareness of the nature of the emergency, the hazardous substances that are released in connection with it. Theoretical analysis of various remote means of assessing the impact of emergencies of man-made areas on the ecological state of the atmospheric air of the surrounding areas. It has been found that the use of remote sensing equipment greatly simplifies the procedure of operational monitoring of the environment during emergencies, as well as contributes to the health of professionals. A comparison of different remote means of environmental monitoring of air quality was performed: In particular, stationary automatic stations, mobile automatic stations, probes, and unmanned aerial vehicles (UAVs) were compared. It is proposed to use UAVs as remote means of operational monitoring of air quality. The functional scheme of UAV system implementation for the needs of operative ecological monitoring is offered. The legal features of the use of unmanned aerial vehicles as remote means of monitoring air quality during emergencies are analyzed.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 53 ◽  
Author(s):  
Buters ◽  
Belton ◽  
Cross

Monitoring is a crucial component of ecological recovery projects, yet it can be challenging to achieve at scale and during the formative stages of plant establishment. The monitoring of seeds and seedlings, which represent extremely vulnerable stages in the plant life cycle, is particularly challenging due to their diminutive size and lack of distinctive morphological characteristics. Counting and classifying seedlings to species level can be time-consuming and extremely difficult, and there is a need for technological approaches offering restoration practitioners with fine-resolution, rapid and scalable plant-based monitoring solutions. Unmanned aerial vehicles (UAVs) offer a novel approach to seed and seedling monitoring, as the combination of high-resolution sensors and low flight altitudes allow for the detection and monitoring of small objects, even in challenging terrain and in remote areas. This study utilized low-altitude UAV imagery and an automated object-based image analysis software to detect and count target seeds and seedlings from a matrix of non-target grasses across a variety of substrates reflective of local restoration substrates. Automated classification of target seeds and target seedlings was achieved at accuracies exceeding 90% and 80%, respectively, although the classification accuracy decreased with increasing flight altitude (i.e., decreasing image resolution) and increasing background surface complexity (increasing percentage cover of non-target grasses and substrate surface texture). Results represent the first empirical evidence that small objects such as seeds and seedlings can be classified from complex ecological backgrounds using automated processes from UAV-imagery with high levels of accuracy. We suggest that this novel application of UAV use in ecological monitoring offers restoration practitioners an excellent tool for rapid, reliable and non-destructive early restoration trajectory assessment.


2020 ◽  
Author(s):  
Marlice vanVuuren ◽  
Rudie vanVuuren ◽  
Larry M. Silverberg ◽  
Joe Manning ◽  
Krishna Pacifici ◽  
...  

AbstractThis paper tests the hypothesis that ungulate-UAV interaction depends strongly on flight altitude, that there may be a lowest altitude range for which the ungulates are not exceedingly disturbed, dictating a practically achievable level of discernibility in flight observation. This question strongly influences the future viability of the UAV in the study and protection of the ungulates in Africa’s arid savanna. This paper examined the behavioral responses of a group of free ranging ungulate species (Oryx, Kudu, Springbok, Giraffe, Eland, Hartebeest, and Impala) found in an animal reserve in Namibia to the presence of different in-flight UAV models. The study included 99 flights (337 passes) at altitudes ranging from 15 to 55 meters. The ungulates were unhabituated to the UAVs and the study was conducted in the presence of stress-inducing events that occur naturally in the environment. The results suggest strong correlations between flight altitude and response across the different ungulates and anecdotal evidence suggests in some cases rapid habituation to the UAVs.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Vanessa Lu ◽  
Feng Xu ◽  
Mardan Aghabey Turghan

Recent technological innovations have led to an upsurge in the availability of unmanned aerial vehicles (also known as drones and hereafter referred to as UAVs)—aircraft remotely operated from the ground—which are increasingly popular tools for ecological research, and the question of this study concerns the extent to which wildlife responses might allow aerial wildlife monitoring (AWM) by UAVs. Our experiment tests the hypothesis that the wildlife-UAVs interaction depends strongly on flight altitude that there may be a lowest altitude range for which the ungulates are not exceedingly disturbed, dictating a practically achievable level of discernibility in flight observation, for this question might influence the future viability of the UAVs in the study and protection of the other wildlife in China’s semiarid ecosystem. We examined the behavioral responses of a group of enclosed Przewalski’s horses (Equus ferus przewalskii) to the presence of different in-flight UAVs models by conducting flights at altitudes ranging from 1 to 52 meters and recorded the heights at which each horse reacted to (noticed and fled) the UAVs. All horses exhibited a stress response to UAVs flights as evidenced by running away. The results suggest strong correlations between flight altitude and response across the different subjects that adults generally noticed the UAVs at the larger heights (20.58 ± 10.46 m) than the immature (4.67 ± 0.87 m). Meanwhile, reaction heights of females (15.85 ± 6.01 m) are smaller than that of males (26.85 ± 18.52 m). Supported by their biological roles in herds (e.g., males must give protection to his entire herd while females are purely responsible for their offspring), our results also show that age, closely followed by gender, are the two most significant elements that determine a horse’s level of alertness to the UAVs. This research will help future scientists to better gauge the appropriate height to use a drone for animal observation in order to minimize disturbance and best preserve their natural behavior.


Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


Sign in / Sign up

Export Citation Format

Share Document