scholarly journals Investigation on the use of aluminium rich sandy soil as natural adsorbent in the removal of lead from water

2021 ◽  
Vol 1195 (1) ◽  
pp. 012003
Author(s):  
Y S Ng ◽  
Y J Tan ◽  
K J Heng ◽  
Y H Ong

Abstract The feasibility of aluminium rich sandy soil collected from Jeram as natural adsorbent in removing lead (Pb) from water was investigated without any surface modification. The investigation on the effect of initial concentration, solution pH, and soil:solution ratio was carried out using response surface methodology. The adsorption efficiency was increased at higher pH and soil:solution ratio, as well as lower initial concentration, as a result of higher availability of adsorption sites and less adsorbate competition. The adsorption followed Langmuir isotherm and monolayer chemisorption with an adsorption capacity of 10.64 mg g−1. The process followed pseudo-second order kinetic model, with a rate constant of 0.011 g mg−1 min−1 at optimum adsorption pH of 4-5.

2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2017 ◽  
Vol 8 (4) ◽  
pp. 522-531
Author(s):  
A. Machrouhi ◽  
M. Farnane ◽  
A. Elhalil ◽  
R. Elmoubarki ◽  
M. Abdennouri ◽  
...  

Abstract Raw beetroot seeds (BS) and H3PO4 activated beetroot seeds (H3PO4-BS) were evaluate for their effectiveness in removing methylene blue (MB) and malachite green (MG) from aqueous solution. BS were carbonized at 500°C for 2 h, and then impregnated with phosphoric acid (phosphoric acid to BS ratio of 1.5 g/g). The impregnated BS were activated in a tubular vertical furnace at 450°C for 2 h. Batch sorption experiments were carried out under various parameters, such as solution pH, adsorbent dosage, contact time, initial dyes concentration and temperature. The experimental results show that the dye sorption was influenced by solution pH and it was greater in the basic range. The sorption yield increases with an increase in the adsorbent dosage. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. Adsorption kinetic data conformed more to the pseudo-second-order kinetic model. The experimental isotherm data were evaluated by Langmuir, Freundlich, Toth and Dubinin–Radushkevich isotherm models. The Langmuir maximum monolayer adsorption capacities were 61.11 and 74.37 mg/g for MB, 51.31 and 213.01 mg/g for MG, respectively in the case of BS and H3PO4-BS. The thermodynamic parameters are also evaluated and discussed.


2010 ◽  
Vol 62 (8) ◽  
pp. 1888-1897 ◽  
Author(s):  
Nan Chen ◽  
Zhenya Zhang ◽  
Chuanping Feng ◽  
Miao Li ◽  
Rongzhi Chen ◽  
...  

Kanuma mud, a geomaterial, is used as an adsorbent for the removal of fluoride from water. The influences of contact time, solution pH, adsorbent dosage, initial fluoride concentration and co-existing ions were investigated by batch equilibration studies. The rate of adsorption was rapid with equilibrium being attained after about 2 h, and the maximum removal of fluoride was obtained at pH 5.0–8.0. The Freundlich isotherm model was found to represent the measured adsorption data well. The negative value of the thermodynamic parameter ΔG suggests the adsorption of fluoride by Kanuma mud was spontaneous, the endothermic nature of adsorption was confirmed by the positive ΔH value. The negative ΔS value for adsorbent denoted decreased randomness at the solid/liquid interface. The adsorption process using Kanuma mud followed the pseudo-second-order kinetic model. Fluoride uptake by the Kanuma mud was a complex process and intra-particle diffusion played a major role in the adsorption process. It was found that adsorbed fluoride could be easily desorbed by washing the adsorbent with a solution of pH 12. This indicates the material could be easily recycled.


2014 ◽  
Vol 931-932 ◽  
pp. 286-290 ◽  
Author(s):  
W. Pimpa ◽  
C. Pimpa

The intention of this study was to prepare the environment friendly durian seed starch/polyvinyl alcohol (DSS/PVOH) composite hydrogels modified by chemical cross-linking with glutaraldehyde and to assess the adsorption potential of the DSS/PVOH composite hydrogels for the removal of the synthetic dyes from aqueous solution. The hydrogels were characterized by swelling behavior and scanning electron microscope (SEM). The effect of DSS content and initial dye solution pH on the adsorption capacity was studied conducting batch experiment system. The DSS/PVOH composite hydrogels consisting 3% DSS has optimum adsorption capacity of 3.411 mg/g (for methylene blue under the condition of pH 7) and 3.274 mg/g (for acid orange 8 under the condition of pH 2.5) at 24 h of contact time. The adsorptions were well fitted by the pseudo-second order kinetic model. It was indicated that the mechanism of removal predominant is effective for low dye concentrations, below 10 mg/l.


2012 ◽  
Vol 506 ◽  
pp. 405-408 ◽  
Author(s):  
T. Rubcumintara ◽  
A. Aksornpan ◽  
W. Jonglertjunya ◽  
W. Koo-Amornpattana ◽  
P. Tasaso

The recovery of gold from chloride solutions using bioadsorbent synthesized from waste rambutan peel was studied. The initial gold concentration 25-900 mg/L, solution pH 1-4, temperature 25-60 °C and the amount of adsorbent 1-25 mg were found to affect the efficiency for gold recovery as well as loading capacity. The 99.8 % gold recovery was accomplished in 1 h with loading capacity of 100 mg Au/g adsorbent at the following conditions: adsorbent 25 mg, initial gold concentration 100 mg/L, pH 2 and temperature 60 °C. The decrease of adsorbent from 25 to 1 mg resulted in the highest loading capacity of 2530 mg Au/g adsorbent and 100 % gold recovery within 100 h. The adsorption isotherm as well as mechanism were also elucidated. The Langmuir isotherm and the pseudo second-order kinetic model were fitted well with the experimental results. The activation energy of reaction was calculated to be 31.07 kJ/mol. The mechanism of adsorption is clarified to be the oxidation of hydroxyl groups and reduction of trivalent gold ions to metallic gold on the adsorbent surface which were supported by FT-IR, XRF and SEM.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


2021 ◽  
Author(s):  
Weifeng Xu ◽  
Xiang Liu ◽  
Jianzhe Cai ◽  
Tiemeng Xue ◽  
Kewen Tang

Abstract As one group of important naphthalene derivatives, naphthol and naphthylamine, are diffusely employed as dye intermediates. The presence of naphthol and naphthylamine in water systems may pose risks to the environment and public health due to their carcinogenicity. In this study, four mesoporous polymers prepared by β-cyclodextrin derivatives and tetrafluoroterephthalonitrile were obtained, and applied to deal with 1-naphthylamine, 2-naphthylamine, 1-naphthol, and 2-naphthol from water. The impact of adsorption time, initial concentration of naphthol and naphthylamine, and temperature on the adsorption efficiency of the four polymers were explored separately. The four polymers present fast adsorption kinetics towards naphthol and naphthylamine, attaining 93%~100% of adsorption equilibrium uptake for 1-naphthol, 1-naphthylamine, 2-naphthylamine in 15 min, and 87%~90% of equilibrium uptake for 2-naphthol in 15 min. The kinetics could be depicted well by the pseudo-second-order kinetic model. The adsorption isotherms of the four polymers towards naphthol and naphthylamine accord with Redlich-Peterson or Sips model. The adsorption ratio increases fast with reducing the initial concentration of naphthol and naphthylamine, which suggest that these polymers are applicable to removing low concentration of naphthol and naphthylamine from water. The adsorption ratio of naphthol and naphthylamine in 5 mg/L, can achieve over 95% in 25 oC. In addition, the four polymers can be effortlessly recovered by a gentle and simple washing procedure with little reduction in performance. The adsorption performance of the four polymers towards the four naphthalene derivatives can be improved by increasing the adsorption temperature. In conclusion, the prepared β-cyclodextrin polymers exhibit rapid water treatment in removing the four low-concentration naphthalene derivatives with convenient regeneration and good reusability.


2020 ◽  
Vol 12 (3) ◽  
pp. 1174 ◽  
Author(s):  
Lulit Habte ◽  
Natnael Shiferaw ◽  
Mohd Danish Khan ◽  
Thenepalli Thriveni ◽  
Ji Whan Ahn

In the present work, waste eggshells were used as a precursor for the synthesis of aragonite crystals through the wet carbonation method. Cadmium (Cd2+) and lead (Pb2+) were removed by the synthesized aragonite from synthetic wastewater. The influence of initial solution pH, contact time, Cd2+ and Pb2+ concentration, and sorbent dosage were evaluated. The major sorption was observed in the first 100 mins and 360 mins for Pb2+and Cd2+ respectively reaching sorption equilibrium at 720 mins (12 hr). The sorption capacity toward Pb2+ was much higher than toward Cd2+. Both heavy metals displayed high sorption capacities at initial pH 6. The pseudo-second-order kinetic model fits well with the experimental data with a higher correlation coefficient R2. Two isotherm models were also evaluated for the best fit with the experimental data obtained. Langmuir isotherm best fits the sorption of the metals on aragonite synthesized from eggshells. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) results of sorbent after sorption showed that the mechanism of sorption was dominated by surface precipitation. Therefore, aragonite crystals synthesized from waste eggshells can be a potential substitute source for the removal of Cd2+ and Pb2+ from contaminated water.


Sign in / Sign up

Export Citation Format

Share Document