scholarly journals Structural Assessment of RCC Elevated Service Reservoir For Different Capacity

2021 ◽  
Vol 1197 (1) ◽  
pp. 012065
Author(s):  
Prashant D. Hiwase ◽  
Rishabh V. Shinde ◽  
Sharda P. Siddh

Abstract Elevated service reservoir is one of the maximum important infrastructures that is utilized by society. Our every day existence relies upon at the water supply, that is procured through an elevated service reservoir. Therefore, the safety of the service reservoir is of utmost importance. Most of the damage on elevated service reservoirs is caused by an earthquake, as the horizontal forces acting on the structure make the service reservoir vulnerable. Our predominantly study is based on extracting the dynamic forces mainly to determine critical condition of the structure. In this paper, different capacities of elevated service reservoir are taken and the design and analysis are done according to Indian standards. Dynamic analysis of the service reservoir is done and parameters such as time period, hydrodynamic pressure, base shear, base moment are compared with different capacities. Hence, the capabilities of the structure are substantially necessary to examine within the sub-continent region.

Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


2019 ◽  
Vol 10 (2) ◽  
pp. 18-31
Author(s):  
Radhikesh Prasad Nanda ◽  
Subhrasmita Majumder

In the present article, the performance of base-isolated infilled frames is studied analytically. The seismic performances of four RC buildings, namely RC bare frame without isolator, RC bare frame with isolator, RC infilled frame without isolator, and RC infilled frame with isolator are analysed. The results show a decrease in base shear value and increase in time period due to base isolated buildings, while these parameters are reversely affected due to infills. The decrease in story drift for the base isolated buildings is in phase while considering infill. Also, it can be inferred that plastic hinge formation is greatly affected by the introduction of masonry infill. Hence, relying on base isolation without considering infills may underestimate the seismic performance.


2018 ◽  
Vol 172 ◽  
pp. 01005
Author(s):  
Amiya Pandit ◽  
Kishore Chandra Biswal

The event caused due to the movement of the unrestricted free surface liquid in container due to any external excitation is known as sloshing. The problem of liquid sloshing phenomenon in stationary or in moving container is a great matter of concern for many researchers and engineers. The containers may range from a cup of milk, ponds, and lakes to fuel tanks of launching vehicles and cargo ships carrying variety of liquids such as oil, liquefied natural gas, and chemical fluids. As a result of sloshing there is spillage of liquid from the containers and it causes structural instability and structural damage. Due to these reasons, liquid retaining structures which are special in construction and in function from an engineering point of view must be constructed well to be resistant against oscillation of the liquid due to external excitations. The amount of liquid participating in the sloshing motion depends on the shape of tank, the liquid depth, internal objects, if any, orientation, duration, amplitude, and frequency contents of external excitations. This present study focuses on the forced vibration analysis of partially filled two-dimensional rigid rectangular tank numerically. A Finite element (FE) code in two dimensions is developed to understand the behavior of sloshing. This method is competent enough of evaluating both impulsive and convective response of tank-liquid system in terms of base shear and hydrodynamic pressure distribution along the walls of the containers.


Seismic analysis of structure is employed to make the structure enable to resist the seismic forces and perform against the factors causing the failure of the structure under dynamic excitation. Among various response factors, the base shear and time period of buildings are predominant factors used in the analysis and design of the structure. The prime objective of the paper is to present an analytical study on non-linear seismic analysis of moment resisting framed buildings (as per Indian code IS1893 – 2016) to evaluate the base shear of different configurations of buildings according to different mode combination methods. The obtained results have been presented the comparative analysis of different combination methods. The paper also presents the evaluated results in the form of the time period values of the different buildings depending upon variation in its configuration. As a result, the responses of multistoried moment-resisting framed buildings have been evaluated for various models of considered buildings based on different mode combination methods, and the results of obtained responses have been analyzed in a comparative manner to understand the behaviour of buildings under various methods and configuration conditions. The work presented in the paper can support to develop better understanding of structural response and efficient designing of structures.


10.29007/gqkl ◽  
2018 ◽  
Author(s):  
Rahul Patel ◽  
Rishi Dave ◽  
Prutha Vyas

The ground supported tanks are firmly attached with ground and tank walls are subjected to hydrostatic as well as hydrodynamic pressure due to seismic forces. Base of the tank is subjected to weight of water and pressure of soil. Top of the tanks may be covered and is designed by using IS 3370:2009 Part (I, II) [4] and IS 1893:2007 (part-2) draft code[3] is used for the seismic analysis of the tank. This paper gives idea behind the design of liquid retaining structure (rectangular ground supported water tank) using working stress method. This paper includes the seismic analysis and design of the tank. The values are obtained with the help of spreadsheet program. Analysis of ground supported water tank has been carried out and relationship between tank capacity with moment capacity and reinforcement area, base shear with impulsive height and overturning moment with convective height is derived.


Author(s):  
Arati Avinash Sabale

Vibration of ground is the main cause of earthquake damage to building structures. There are many factors responsible for the strength of earthquake shaking at a site including the earthquake's magnitude, the site's proximity to the fault, the local geology, and the soil type. The natural disasters have been fast recurring all over the world causing great concern and damage to man and their properties. Among these disasters Earthquake is an endogenous natural disaster, which occurs suddenly without any warning. The vast devastation of engineering systems and facilities during the past earthquakes has exposed serious deficiencies in the prevalent design and construction. Shear wall is one of the most commonly used lateral load resisting in high rise buildings. Shear wall can be used to simultaneously resist large horizontal load and support gravity load. In the study, one tall RCC building of 13 stories is assumed to be situated in seismic zone V is analysed using two methods (Static and Dynamic Analysis). The share walls are taken at different position of building. The comparison of the different shear wall models is studied in this work against the different parameters like time period, bending moment, shear force, storey drift, displacement


Author(s):  
Kapil Shankar Soni

Abstract: Infill walls are inevitable components of any structure to create dispassion between interior space and external condition. In general, there are some prevalent openings inside the infill walls because of practical needs, architectural observations or aesthetic inspections. In current design practice, strength and inflexibility contribution of infill walls aren't thought of. However, the presence of infill walls may impact the seismic reaction of structures exposed to earthquake loads and cause a conduct which is not the same as that estimated for a bare frame. Additionally, partial openings inside infill walls are significant parameter prompting the seismic behaviour of infilled frames in this manner retreating lateral stiffness and strength. In this study is proposed to compare various models of buildings considering the openings (10% of surface area) at different locations in the infill walls for the seismic behaviour. A G+13 residential building is considered in Zone III with soil type II and analysis is carried out by Response Spectrum Method. Various parameters are considered such as Natural Time period, Base shear, Storey displacement, Storey drift and Storey stiffness were studied. The comparative study could simplify designers and code developers in selecting and recommending appropriate analytical models for estimating strength, stiffness, failure modes and other properties of infill frames with openings. Keywords: Residential Building, Openings Infill Wall, ETAB Software, Natural Time Period, Base Shear, Storey Shear, Storey Displacement, Storey Drift, Storey Stiffness.


The offshore jacket platforms are primarily installed in the large oceans mainly for drilling the crude oil, carbohydrates and production of electricity. The current studies emphasize on the structural performance of offshore deck jacket platform with different bracing systems. Earthquake analysis has been performed to calculate the seismic responses, with the help of bracings to control the seismic induced vibrations of the jacket platforms. For this study, a jacket platform made up of steel members has been modeled and then analyzed under earthquake and wave loadings. This paper mainly deals to compute and compare the seismic behavior of offshore steel deck platform using SAP 2000 v20 software with bracing in the horizontal plane and bracing in both horizontal and vertical planes. The total number of 8 models has been analyzed in the SAP2000 software with bracing i.e. X, V, Inverted V and K in the vertical plane and bracing i.e. X, V, Inverted V and K in both horizontal and vertical plane. A relative study has been carried out in Time period, deck displacement and base shear. Seismic analysis using linear static, i.e. Equivalent static method (ESA) and linear dynamic, i.e. Response spectrum method (RSA) has been performed. Further deck displacement, time period and base shear are determined by Equivalent static method and Response spectrum method for various types of bracing models in both horizontal and vertical planes. Among the all various types of bracing models, Inverted V bracing in the vertical plane is found to be the optimum model among all other models.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
A. Vimala ◽  
A. Vimala

Urbanization and population explosion in the present times has led to increase in demand for land and residencies but the availability of land is scare i.e reason a trend has evolved for construction of high rise structures in high rise structures major emphasis given to lateral load resisting systems. As diagrid structural system is lighter, stiffer and is effective in resisting the lateral loads, the present investigation carried out to study the performance diagrid on high rise structures varying aspect ratio. The study is carried out to observe the performance of diagrid structures ranging from 30 to 90 storeys. Diagrid structures are modelled with 3 storey module and performance of 7 models with different storeys i.e 30, 40, 50, 60, 70, 80, 90 (aspect ratio 3.67-10.86) and with fixed plan area. As a part 1 investigation to optimise the diagrid angle a 30 storey Diagrid structure performance is studied with 4 different diagrid angles one storey module angle 35°45’, Two storey module angle 55°13’, Three storey module 65°9’, Four storey module 70°51’. The optimized diagrid angle is used for different aspect ratio high rise structures to investigate the performance in terms of Storey displacement, Storey drift ratio, base shear and time period. For all the models plan area is fixed. Second part of investigation was a numerical study carried out by utilizing identified optimum angle of diagrid is applied on high rise buildings with aspect ratios 3.67, 4.86, 6.06, 7.26, 8.46, 9.67, 10.86 (Aspect ratio is the total height of the building to the width of the building). Behaviour of the Diagrid buildings due to change in aspect ratio is analysed based on parameters such as Storey displacements, Storey drift ratio, Base shear, Time period. As a part of investigation parameters such as Storey displacements and storey drift ratio were evaluated if they were within the limits as per IS code provisions. Percentage increase in storey displacements, maximum storey drift ratio,


2011 ◽  
Vol 11 (06) ◽  
pp. 1059-1088 ◽  
Author(s):  
KESHAV K. SANGLE ◽  
KAMAL M. BAJORIA ◽  
RAJSHEKAR S. TALICOTTI

This paper presents the finite element buckling and dynamic analyses of two-dimensional (2D) single frames and three-dimensional (3D) frames of cold-formed sections with semirigid connections used in the conventional pallet racking system. The results of buckling analysis for the single 2D frames are compared with those from the experimental study and effective length approach given by RMI. The finite element model used for the single 2D plane frame is further extended to 3D frames with semirigid connections, for which the buckling analysis results are obtained. The buckling and dynamic analyses are carried out using ANSYS for 18 types of developed column sections. The stiffness of the semirigid connection is determined by both the single and double cantilever test methods, along with the nonlinear finite element analysis. Further, an equivalent single degree-of-freedom model is proposed for simulating the seismic behavior of the storage rack in the down-aisle direction, aimed at developing simplified equations for the fundamental period, base shear, and top displacement of the rack. A parametric study is carried out to compute the fundamental period and mode shape. The transient dynamic analysis is also performed for evaluating the impact of the forklift on columns of the frame.


Sign in / Sign up

Export Citation Format

Share Document