scholarly journals Influence of Lime for Enhancing Characteristics of Expansive Soils in Road Works

2021 ◽  
Vol 1197 (1) ◽  
pp. 012077
Author(s):  
K.S Chamberlin ◽  
M. Rama Rao

Abstract Expansive soils are found in black cotton soils, which swell or shrink in volume when presented to changes in moisture content. Lime treatment is exhaustively used to increment the properties of sensitive and fragile soils. One of the hugest clarifications behind using lime is to decline the developing presentation of the earth soil. The arrangement of extra safeguards improves the reaction of quicklime (CaO) with water, structures hydrated (slaked) lime (Ca (OH)2), and thus earth characteristics. The vast inadequacy of employing lime is growing the deficiency of lime offset earth. Following that, the goal of this study is to see how re-establishing time affects the geotechnical qualities of settled Black cotton soils with lime. These discoveries recommend that adding Lime as a stabilizer works on the strength of black cotton soil. Some of the characteristics of the soil likely to be increased by using stabilizer in this work are UCS (Unconfined Compressive Strength) at different curing periods (7,14,28 and 56 days), CBR (California Bearing Ratio) value at unsoaked and soaked and MDD (Maximum Dry Density) decrease at different lime percentages(%) like 2.4.6.8 and 10. The result showed here untreated soil got stabilized by using the stabilizer in certain extent In this adjustment various rates of cementitious material is added to black cotton soil and directed tests like plasticity, compaction, swell pressure, free swell index(FSI), Coefficient of permeability (k) and CBR(soaked and unsoaked) at various conditions like OMC,OMC+2% water and OMC+5% water, UCS (Unconfined Compressive Strength) was performed. From the test results, it is identified that the stabilization agent decreases plasticity and improves strength characteristics. Addition of stabilizing agent makes the black cotton soil to non-plastic, non-swelling and attains increase CBR values which are greater than 25% for a dosage of 10% lime at OMC but remaining OMC+2%water & OMC+5%water CBR values are not various much difference as per test results. With the addition of lime, the black cotton soil becomes non-plastic, non-swelling, and has high strengths. Treated soils are used as a development material, for example, a subgrade layer in the development of adaptable asphalt pavements for roads.

2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


Expansive soils are problematic soils for Civil Engineers. Black cotton (BC) soils possess low strength and high compressibility, due to these properties black cotton soils are considered to be challenging one for analysis. To achieve desired properties of soil for construction purpose these black cotton soil must be enhanced to meet its requirement. To modify the properties of black cotton soils, many treatment methods are there. In this paper an attempt has been made to improve the properties of black cotton soil by using industrial waste through stabilization method. By stabilizing the soil properties are enhanced and make it suitable for subgrade construction. In this work, the combined effect of Lime and Phosphogypsum (PG) on compaction characteristics, Atterberg’s Limit, Unconfined Compressive Strength (UCS) for original soil, California Bearing Ratio (CBR) and direct shear Test of a black cotton soil with percentage varying of Lime and Phosphogypsum was carried out. The soil samples were tested for tri-axial compression test and CBR tests were carried out after 4 days curing period. From the results, it has been inferred that the black cotton soil treated with Lime and Phosphogypsum in the percentages of (4:4) has better strength characteristics. Hence, it may be concluded that Lime and Phosphogypsum can be used for stabilization of black cotton soils for pavement subgrade


2020 ◽  
Vol 10 (3) ◽  
pp. 36-53
Author(s):  
Dr. Zaid Hameed Majeed ◽  
Eng. Kadhim Jawad Aubais ◽  
Dr. Mohd Raihan Taha

The design foundations  of storage tanks for oil industry experiences significant problems due to the widespread occurrence of weak and compressible soil which resulted in foundation failure. In this study, soft soils were taken from two locations and mixed with three types of nanoparticles which were nano-alumina (nano Al2O3), nano-copper (nano CuO), and nano-magnesium (nano MgO). Nanomaterials were incorporated in small percentage (less than 1%) by dry weight of soil. The tested geotechnical characteristics included the water content, dry density, and the unconfined compressive strength. The results showed significant enhancements in the maximum dry density and unconfined compressive strength. The level of enhancement depended on the type of nanomaterials and the contents. Improved strength and hardening properties were shown with the utilization of nano CuO material in comparison to the soil samples with the other nanomaterials additions, with its optimum addition of 0.7% provided an increment rate of 662.7% while the optimum nano CuO which is about 1% showed a 532% increasing rate in the compressive strength of S1 soil. It was noted that the maximum dry density and unconfined compressive strength enhanced with the increase in the nanoparticles content until reaching a percentage in which the strength decreased. The optimum content of the nano MgO was 0.3% while the optimum nano Al2O3 content was about 0.3% for soil S1 and was about 0.1% for soil S2. The presence of nanomaterials in excessive contents caused agglomeration of particles which had negative influences on mechanical characteristics of the soils. Generally, the incorporation of finer particles like nanoparticles even with low amount would improve the geotechnical characteristics of soils with the consideration of the potential environmental benefits, these combined admixtures are intended to lower the cost and become a more sustainable and environmental alternative for soil stabilization


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 203 ◽  
Author(s):  
Muhammad Irfan ◽  
Yulong Chen ◽  
Muhammad Ali ◽  
Muhammad Abrar ◽  
Ahmed Qadri ◽  
...  

The unchecked and unnoticed disposal of industrial leachates is a common malpractice in developing countries. Untreated effluents from industries drastically deteriorate the soil, altering nearly all of its characteristics. An increase in urbanization has led to construction on these deteriorated lands. In this study, the chemical impact of two industrial effluents, dyeing (acidic) and tannery (basic), is studied on two cohesive soils, i.e., high plastic clay (CH) and low plastic clay (CL). Properties such as liquid limit, plasticity index, specific gravity, maximum dry density, unconfined compressive strength, swell potential, swell pressure, and compression indices decrease with effluent contamination, with the exception of the basic effluent, for which the trend changes after a certain percentage. This study also examines the time variation of properties at different effluent percentages, finding that unconfined compressive strength of both soils increases with time upon dyeing (acidic) contamination and decreases with tannery (basic). The stabilizing effect of two industrial by-products, i.e., marble dust and ground granulated blast furnace slag (GGBFS) have been evaluated. Unlike their proven positive effect on uncontaminated soils, these industrial by-products did not show any significant stabilization effect on leachate-contaminated cohesive soils, thereby emphasizing the need to utilize special remediation measures for effluent treated soils.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Gao ◽  
Guohui Hu ◽  
Nan Xu ◽  
Junyi Fu ◽  
Chao Xiang ◽  
...  

In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.


2021 ◽  
Vol 53 (5) ◽  
pp. 210510
Author(s):  
Zalwango Teddy ◽  
Bazairwe Annette ◽  
Safiki Ainomugisha

Expansive soils constitute one of the most frequently encountered and challenging soils to geotechnical engineers. This study assessed the possibility of utilizing sugarcane bagasse ash (SCBA) by partially replacing slaked lime to stabilize expansive clay soils. The soil samples were picked from Muduuma area, Mpigi district, Central Uganda. Experimental tests of linear shrinkage (LS), plasticity index (PI), and California Bearing Ratio (CBR) were conducted on both unstabilized soil and SCBA-lime treated samples. The SCBA-lime mixture was prepared by partially replacing 5% lime with SCBA at 2, 4, 6, 8, and 10% by weight. Hence, SCBA was used in proportions of 0.1, 0.2, 0.3, 0.4, and 0.5% by dry weight of the soil. The addition of lime greatly lowered the PI and LS, which later increased with the addition of the SCBA. The maximum dry density was generally lowered with the addition of lime and SCBA, from 1.87 g/cm3 to 1.58%. The CBR increased with SCBA-lime addition from 12% for unstabilized soil up to 48% at 6% SCBA replacement. The optimum lime replacement was established as 6% SCBA lime replacement based on CBR criteria. At the 6% optimum, the optimum moisture content (OMC) was 1.7 Mg/m3, LS was 10%, and PI was 20%. This study demonstrated the potentiality of SCBA as a novel construction material, specifically by partially reducing the usage of the unsustainable, non-environmentally friendly lime. It is also expected to enable using currently unsuitable clays from the region.


2016 ◽  
Vol 78 (8-5) ◽  
Author(s):  
Muzamir Hasan ◽  
Ali Jamal Alrubaye ◽  
Leong Kah Seng ◽  
Mohammad Syafiq Ideris ◽  
Aminaton Marto

Soil stabilisation, as a cost-effective and environmentally friendly method, is used in the building of systems like roads, dams, canals and river levels. Chemical stabilisation of soil is carried out by adding binder or by-products like lime and silica fume to the soil thereby modifying the geotechnical performance of the soil. Various researchers have carried out research on the properties of soil, such as its compaction, compressibility, hydraulic conductivity, and strength characteristics. The focus of the study was the determination of the physical properties of the soft clay used and the strength of soft clay (kaolin) mixed with 6 % of silica fume and various percentages (3 %, 5 %, 7 % and 9 %) of lime. Unconfined compression test was carried out on the soft clay and the mixtures of soft clay-lime-silica fume to investigate the effect of lime stabilisation with silica fume additives on the unconfined compressive strength of the mixtures. Based on the results obtained, all soil samples were indicated as soils with medium plasticity. From 0 % to 9 % of lime with 6 % of silica fume, the decreased in the maximum dry density was by 5.92 % and the increased in the optimum moisture content was by 23.5 %. Decreased in the coefficient of permeability of the mixtures occurred when compared to the coefficient of permeability of the soft clay itself. The improvement in shear strength of soft clay mixed with 6 % silica fume and 5 % lime was 29.83 % compared to the shear strength of the soft clay sample. The optimal percentage of lime-silica fume combination was attained at 5.0 % of lime and 6.0 % of silica fume in order to improve the shear strength of soft clay. It can be concluded that lime-silica fume additives improved the unconfined compressive strength of the soft clay.


Sign in / Sign up

Export Citation Format

Share Document