scholarly journals Code for calculating wave technology of thermal-gas-chemical formation treatment for oil recovery enhancement

2021 ◽  
Vol 1201 (1) ◽  
pp. 012028
Author(s):  
M N Kravchenko ◽  
V E Kroshilin ◽  
N N Dieva

Abstract Transition to the development of hard-to-recover hydrocarbons, including in regions the far north, is fraught with difficulties in using classical technologies development. This is due to the low porosity and permeability of the reservoirs, high viscosity of the formation fluid and the manifestation of abnormal (non-Newton) properties of hydrocarbon fluids. In this regard, for more than ten years, pilot field research (FPI) in terms of the selection and optimization of technologies for collectors of complex structures. Since 2011, at the departments of the underground hydromechanics of Gubkin Russian State University of Oil and Gas (NRU) and gas wave dynamics of the Lomonosov Moscow State University, research is underway on the use of thermogas-chemical method with an injection of a binary mixture to stimulate the inflow. Since 2011, several settlement codes of different levels were created, which allowed carrying out support (pilot) in various fields. Based software products managed to evaluate the characteristics in the chemical reaction zone decomposition of the working chemical composition, evaluate safe regimes, excluding damage to the wellbore and assess the prolongation of the effect. Published more than 20 works (including patents) with the participation of the authors. Since 2019 the mathematical model is significantly complicated: the multiphase and non-isothermality of the process, non-uniformity of the flow. Currently established generalizing code, in the mathematical model of which is additionally taken into account different compressibility of phases and rheological properties of fluids, which allows more fine-tune the computational code for the type of a specific field, taking into account its geological features and damage to the bottomhole zone in the previous stages of development.

2021 ◽  

The compendium of works presented at the international conference of young scholars, organized by the Center of Energy Studies, IMEMO RAS and Faculty of International Energy Business of Gubkin Russian State University (NRU) of Oil and Gas, covers various trends of world energy complex development in the context of energy transition. Special attention is paid to the analysis of the situation in the energy sector of Vietnam, China, India, Iran and Uzbekistan as well as to prospects of hydrogen and LNG transport development.


Georesursy ◽  
2020 ◽  
pp. 5-9
Author(s):  
Renat Kh. Muslimov

The Republic of Tatarstan has accumulated vast experience in the exploration and development of oil fields of various ranks – from small and smallest to giant and supergiant. Approaches for the rational development of various groups and categories of deposits have been found. The most effective methods of prospecting, exploration and additional exploration of oil fields, the most advanced hydrodynamic methods of developing fields with active and hard-to-recover reserves, including those at the late and post-late stages of development, have been worked out. Methods of enhanced oil recovery have found wide application for various geological and physical conditions, including the extraction of residual reserves from long-term exploited fields. A great deal of experience has been accumulated in the development of complex small fields with hard-to-recover oil reserves. Research work is underway to find effective methods for the development of unconventional oil deposits (high-viscosity, ultra-high-viscosity oils and natural bitumen, in shale and similar deposits), to study the phenomenon of replenishment of sedimentary cover deposits with deep hydrocarbons through the crystalline basement. This experience of advanced development of the republic helps in the formation of the principles of a new paradigm for the development of the oil and gas industry.


2020 ◽  
Vol 17 (34) ◽  
pp. 892-904
Author(s):  
Zinon A KUANGALIEV ◽  
Gulsin S DOSKASIYEVA ◽  
Altynbek S MARDANOV

The main part of Russia's hard-to-recover reserves is 73% for low-grade and carbonate reservoirs, 12% for high-viscosity oil, about 15% of extensive sub-gas zones of oil and gas deposits and 7% of reservoirs lying at great depths. The development of such stocks with the usage of traditional technologies is economically inefficient. It requires the application of new technologies for their development and fundamentally new approaches to design, taking into account the features of extraction of hard-to-extract reserves (HtER). The purpose of this research is to find ways to improve the performance of low-permeability reservoirs. To accomplish this task, the Novobogatinsk South-Eastern Oil Field has been taken as an example and described. The necessary properties of production facilities in the field are highlighted, along with economic feasibility and technological efficiency. The reserves involved in the development are determined and, thanks to the knowledge of the geological oil reserves of the deposits, the potential oil recovery factor is calculated with the existing development technology. As a result of the research, development options were worked out with the results of the calculation of design indicators for the field as a whole. The comparison of oil recovery schedules and ORI, as well as the layout of wells, have been presented. As a result of the study, a description of 3 options for the development of design indicators for the field as a whole is given. The figures show oil production graphs, as well as location patterns. The authors of the study conclude which of the recommended development options can help extract maximum oil reserves.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022031
Author(s):  
V V Provotorov ◽  
A A Part ◽  
A V Shleenko ◽  
S M Sergeev

Abstract Analytical methods for solving various problems of an applied nature (for example, non-stationary transfer problems over network hydro, gas and heat carriers), whose mathematical models use the formalisms of evolutionary differential systems, are possible with rare exceptions. That is why the construction of numerical and simulation models for the use of quantitative analysis methods becomes a universal research tool, if at the same time the implementation of these models on a computer is carried out – in other words, a complex of software engineering of the process under study is formed. The study uses the method of semidiscretization by a time variable of the mathematical model of the evolutionary non-equilibrium process of continuous medium transfer, which remains one of the most effective methods for analyzing applied problems. In this case, the elliptic operator of the mathematical model has a special basis (a system of eigenfunctions), which is why the analysis is reduced to the study of a boundary value problem for elliptic-type equations with a spatial variable changing on a network-like domain. The paper presents the conditions for unambiguous weak solvability of a differential-difference system, which is a difference analogue in the time variable of the original system, and the way of constructing an algorithm for finding an approximate solution is indicated. The study contains an analysis of the stability and convergence of difference schemes of evolutionary network-like nonequilibrium processes of continuous media transfer over network carriers and includes an analysis of the correctness of the mathematical model of this process. The results of the work are applicable in the framework of oil and gas engineering to the study of issues of stabilization and parametric optimization of the processes of transportation of liquid media through spatial networks.


Author(s):  
Rodrigo De Alvarenga Rosa ◽  
Henrique Fiorot Astoures ◽  
André Silva Rosa

Oil exploration in Brazil is mainly held by offshore platforms which require the supply of several products, including diesel to maintain its engines. One strategy to supply diesel to the platforms is to keep a vessel filled with diesel nearby the exploration basin. An empty boat leaves the port and goes directly to this vessel, then it is loaded with diesel. After that, it makes a trip to supply the platforms and when the boat is empty, it returns to the vessel to be reloaded with more diesel going to another trip. Based on this description, this paper proposes a mathematical model based on the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) to solve the problem. The purpose of the model is to plan the routes for the boats to meet the diesel requests of the platform. Given the fact that in the literature, papers about the VRPIRF are scarce and papers about the VRPIRF applied to offshore platforms were not found in the published papers, this paper is important to contribute with the evolution of this class of problem, bringing also a solution for a real application that is very important for the oil and gas business. The mathematical model was tested using the CPLEX 12.6. In order to assess the mathematical model, tests were done with data from the major Brazilian oil and gas company and several strategies were tested.DOI: http://dx.doi.org/10.4995/CIT2016.2016.2217


2018 ◽  
Vol 13 (2) ◽  
pp. 76-76
Author(s):  
Валерий Белов ◽  
Valeriy Belov ◽  
Леонид Рыбаков ◽  
Leonid Rybakov ◽  
Светлана Овчукова ◽  
...  

A brief analysis of suspension mechanisms and ways to improve the quality of press harvesting for flax harvesting is considered. By researching the mathematical model, the authors prove the possibility of increasing the stability of the elastic characteristics of the suspension mechanisms by changing the angle between the levers or changing the geometry of the structure, for example, the attachment point of a two-arm lever. Particular attention is drawn to the new term “reduced rigidity” of the suspension mechanism. Using this notion and the method of its determination, the authors recommend determining the optimal value of the reduced stiffness of the suspension in the way of mathematical modeling and using this indicator as the main optimization parameter. The results of theoretical and experimental studies were presented by the authors in the form of elastic characteristics of the suspension mechanisms. When conducting a study of the mathematical model, it is suggested to take into account the condition of equality of the maximum values of the moments of forces from the action of the tension forces of the belts or the mass of the working element and the moment of forces acting on the side of the tension springs. During the research of the suspension mechanism, the actual dimensions of the PR-1.5 baler design were adopted. At the same time, we briefly describe the design of the improved tensioning mechanism of a baler for flax harvesting. A rather detailed analysis is given by the authors of the obtained elastic characteristics of the suspension mechanism. Some new features of the elastic characteristics of the suspension mechanism that have not been previously detected are described. To confirm the correctness of the reasoning, the authors implemented their research in a real press-picker and conducted field research that confirmed the possibility of improving the quality of the upgraded version of the machine. To confirm the results of the research, the authors presented a fragment of the field test protocol. The task is solved, uniformity of the roll density is ensured and its density is increased.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 620 ◽  
Author(s):  
Josue F. Perez-Sanchez ◽  
Nancy P. Diaz-Zavala ◽  
Susana Gonzalez-Santana ◽  
Elena F. Izquierdo-Kulich ◽  
Edgardo J. Suarez-Dominguez

The most complex components in heavy crude oils tend to form aggregates that constitute the dispersed phase in these fluids, showing the high viscosity values that characterize them. Water-in-oil (W/O) emulsions are affected by the presence and concentration of this phase in crude oil. In this paper, a theoretical study based on computational chemistry was carried out to determine the molecular interaction energies between paraffin–asphaltenes–water and four surfactant molecules to predict their effect in W/O emulsions and the theoretical influence on the pressure drop behavior for fluids that move through porous media. The mathematical model determined a typical behavior of the fluid when the parameters of the system are changed (pore size, particle size, dispersed phase fraction in the fluid, and stratified fluid) and the viscosity model determined that two of the surfactant molecules are suitable for applications in the destabilization of W/O emulsions. Therefore, an experimental study must be set to determine the feasibility of the methodology and mathematical model displayed in this work.


2021 ◽  
Author(s):  
Merit P. Ekeregbe

Abstract In an era where cost is a significant component of decision making, every possibility of reducing operational cost in the Oil and Gas industry is a welcome development. The volatile nature of the Oil market creates uncertainty in the industry. One way to manage this uncertainty is by the ability to predict and optimize our operations to reduce all of our cost elements. When cost is planned and predicted as accurately as possible, the operation optimizations can be managed efficiently. Practically, all new drills require CT unloading of the completion or kill fluids to allow the natural flow of the wells. Hitherto, there is no mathematical model that combines information from one of the wells in an unloading dual completion project that can be used to aid decision-making in the other well for the same unloading project and thereby result in an effective cost-saving. Deploying the mathematical model of cost element prediction and optimization can minimize operational unloading costs. The two strings of the dual completion flow from different reservoirs. Still, the link between the two drainages post completion is the kill fluid density, and can aid in cost estimation for optimum benefit. The lesson learned or data acquired from the lifting of the slave reservoir string can be optimized to effectively and efficiently lift the master reservoir string. The decision of first unloading the slave reservoir string is critical for correct prediction and optimization of the ultimate cost. The mathematical model was able to predict the consumable cost elements such as the gallon of nitrogen and time that may be spent on the long string from the correlative analysis of the short string. The more energy is required for unloading the short string and it is the more critical well than the long string because it is the slave string since no consideration as such is given to it when beneficiating the kill fluid to target the long string reservoir pressure with a certain safety overbalance. The rule for the mud weight or the weight of the kill fluid is the highest depth with highest reservoir pressure which is the sand on the long string. With the data from the short string and upper sand reservoir, the lift depth and unloading operation can be optimized to save cost. The short string will incur the higher cost and as such should be lifted last and the optimization can be done with the factor of the LS.


LITOSFERA ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 386-392
Author(s):  
Vitalii G. Kuznetsov ◽  
◽  
Liliya M. Zhuravleva ◽  
Liu Shiqi ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document