scholarly journals Wood plastic composites from chopped and pelleted waste plastic bags: effect of concentrations and reprocessing on flexural modulus and strength

Author(s):  
B Ramadhoni ◽  
L A Prasetyorini ◽  
O Ujianto ◽  
W Wuryanti
2011 ◽  
Vol 393-395 ◽  
pp. 76-79 ◽  
Author(s):  
Hai Bing Huang ◽  
Hu Hu Du ◽  
Wei Hong Wang ◽  
Hai Gang Wang

In this article, wood-plastic composites(WPCs) were manufactured with wood flour(80~120mesh、40~80mesh、20~40mesh、10~20mesh) combing with high density polyethylene(HDPE). Effects of the size of wood flour on mechanical properies and density of composites were investigated. Results showed that particle size of wood flour had an important effect on properitiesof WPCs. Change of mesh number had a outstanding effect on flexural modulus, tensile modulus and impact strength, howere, little effect on flexural strength and tensile strength. When mesh number of wood flour changed from 80~120mesh to 10~20mesh,flexural modulus and tensile modulus were respectively enhanced by 42.4% and 28.4%, respectively, and impact strength was decreased by 35.5%.Size of wood flour basically had no effect on density of composite within 10~120mesh. The use of wood flour or fiber as fillers and reinforcements in thermoplastics has been gaining acceptance in commodity plastics applications in the past few years. WPCs are currently experiencing a dramatic increase in use. Most of them are used to produce window/door profiles,decking,railing,ang siding. Wood thermoplastic composites are manufactured by dispering wood fiber or wood flour(WF) into molten plastics to form composite materials by processing techniques such as extrusion,themoforming, and compression or injection molding[1]. WPCs have such advantages[2]:(1)With wood as filler can improve heat resistance and strength of plastic, and wood has a low cost, comparing with inorganic filler, wood has a low density. Wood as strengthen material has a great potential in improving tensile strength and flexural modulus[3];(2) For composite of same volume, composites with wood as filler have a little abrasion for equipment and can be regenerated;(3)They have a low water absorption and low hygroscopic property, They are not in need of protective waterproof paint, at the same time, composite can be dyed and painted for them own needs;(4)They are superior to wood in resistantnce to crack、leaf mold and termite aspects, composites are the same biodegradation as wood;(5)They can be processed or connected like wood;(6)They can be processed into a lots of complicated shape product by means of extrusion or molding and so on, meanwhile, they have high-efficiency raw material conversion and itself recycle utilization[4]. While there are many sucesses to report in WPCs, there are still some issues that need to be addressed before this technology will reach its full potential. This technology involves two different types of materials: one hygroscopic(biomass) and one hydrophobic(plastic), so there are issues of phase separation and compatibilization[5]. In this paper, Effects of the size of wood powder on mechanical properties of WPCs were studied.


2013 ◽  
Vol 747 ◽  
pp. 355-358 ◽  
Author(s):  
Pornsri Pakeyangkoon ◽  
Benjawan Ploydee

Mechanical properties of wood plastic composite, prepared from acrylate-styrene-acrylonitrile (ASA) and bagasse, were investigated. In this study, 10 to 50 phr of bagasse were used in order to obtain the wood plastic composite with superior mechanical properties. The wood plastic composites in the study were prepared by melt-blending technique. All materials were mixed by using a two-roll-mill, shaped into sheets by a compression molding machine and the specimens were cut with a cutting machine. Youngs modulus, flexural strength, flexural modulus, impact strength and hardness of the wood plastic composites were investigated and found to improve with increasing bagasse content. However, some composite properties, i.e., impact strength, was decreased by adding the bagasse and then become steady when the amount of bagasse added was more than 30 phr. It was concluded that wood plastic composites with the desirable mechanical properties can be formulated using ASA as the matrix polymer and 50 phr of bagasse.


2017 ◽  
Vol 36 (12) ◽  
pp. 853-863
Author(s):  
Qingde Li ◽  
Xun Gao ◽  
Wanli Cheng ◽  
Guangping Han ◽  
Jiye Han

In this study, by preparing red pottery clay according to unearthed red pottery clay pieces and using red pottery clay to reinforce high-density polyethylene-based wood–plastic composites, the effects of the amount of red pottery clay on the properties of the fabricated wood–plastic composites were investigated. The results indicated that when the amount of red pottery clay increased, flexural strength and impact strength of the composite initially increased and then decreased; flexural modulus increased and tensile strength and elongation at break decreased. The cone calorimeter tests studied the effects of red pottery clay on the flame retardant and smoke suppressant behaviors of high-density polyethylene-based wood–plastic composites. Red pottery clay formed a ceramic structure on the surface and inside high-density polyethylene, thus preventing high-density polyethylene from interacting with oxygen and increasing the amount of available carbon. As a result, the flame retardant properties of wood–plastic composites were improved due to the addition of red pottery clay. A comprehensive evaluation of the properties of high-density polyethylene-based wood–plastic composites reinforced with red pottery clay showed that addition of 5% of red pottery clay resulted in the most optimal mechanical properties: the addition of red pottery clay improved the density of the composite, decreased the shrinkage rate, and enhanced the flame retardant properties.


2016 ◽  
Vol 721 ◽  
pp. 48-52 ◽  
Author(s):  
Janis Kajaks ◽  
Karlis Kalnins ◽  
Sandris Uzulis ◽  
Juris Matvejs

Three types of birch wood plywood by-products: plywood sanding dust (PSD), plywood sawdust (PSWD) and refined plywood scrap fibres (RPSF) and polypropylene composites exploitation properties (tensile, flexural modulus), microhardness water resistance and fluidity of composite melts, were evaluated. These investigations showed possibility of usage as excellent reinforcements for polypropylene presented by-products. For example tensile modulus increase up to 5 times, but flexural modulus till 2.3 times. Optimal content of PSD in polypropylene composites is 40 wt%, but in the cases of PSWD and RPSF 50 wt%.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2681
Author(s):  
Ke-Chang Hung ◽  
Wen-Chao Chang ◽  
Jin-Wei Xu ◽  
Tung-Lin Wu ◽  
Jyh-Horng Wu

The purpose of this study is to compare the characteristics of wood–plastic composites (WPCs) made of polypropylene (PP) and wood fibers (WFs) from discarded stems, branches, and roots of pomelo trees. The results show that the WPCs made of 30–60 mesh WFs from stems have better physical, flexural, and tensile properties than other WPCs. However, the flexural strengths of all WPCs are not only comparable to those of commercial wood–PP composites but also meet the strength requirements of the Chinese National Standard for exterior WPCs. In addition, the color change of WPCs that contained branch WFs was lower than that of WPCs that contained stem or root WFs during the initial stage of the accelerated weathering test, but the surface color parameters of all WPCs were very similar after 500 h of xenon arc accelerated weathering. Scanning electron microscope (SEM) micrographs showed many cracks on the surfaces of WPCs after accelerated weathering for 500 h, but their flexural modulus of rupture (MOR) and modulus of elasticity (MOE) values did not differ significantly during weathering. Thus, all the discarded parts of pomelo trees can be used to manufacture WPCs, and there were no significant differences in their weathering properties during 500 h of xenon arc accelerated weathering.


2020 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Sergej Medved ◽  
Daša Krapež Tomec ◽  
Angela Balzano ◽  
Maks Merela

Since invasive alien species are one of the main causes of biodiversity loss in the region and thus of changes in ecosystem services, it is important to find the best possible solution for their removal from nature and the best practice for their usability. The aim of the study was to investigate their properties as components of wood-plastic composites and to investigate the properties of the wood-plastic composites produced. The overall objective was to test the potential of available alien plant species as raw material for the manufacture of products. This would contribute to sustainability and give them a better chance of ending their life cycle. One of the possible solutions on a large scale is to use alien wood species for the production of wood plastic composites (WPC). Five invasive alien hardwood species have been used in combination with polyethylene powder (PE) and maleic anhydride grafted polyethylene (MAPE) to produce various flat pressed WPC boards. Microstructural analyses (confocal laser scanning microscopy and scanning electron microscopy) and mechanical tests (flexural strength, tensile strength) were performed. Furthermore, measurements of density, thickness swelling, water absorption and dimensional stability during heating and cooling were carried out. Comparisons were made between the properties of six WPC boards (five alien wood species and mixed boards). The results showed that the differences between different invasive alien wood species were less obvious in mechanical properties, while the differences in sorption properties and dimensional stability were more significant. The analyses of the WPC structure showed a good penetration of the polymer into the lumens of the wood cells and a fine internal structure without voids. These are crucial conditions to obtain a good, mechanically strong and water-resistant material.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 697
Author(s):  
Anna Wiejak ◽  
Barbara Francke

Durability tests against fungi action for wood-plastic composites are carried out in accordance with European standard ENV 12038, but the authors of the manuscript try to prove that the assessment of the results done according to these methods is imprecise and suffers from a significant error. Fungi exposure is always accompanied by high humidity, so the result of tests made by such method is always burdened with the influence of moisture, which can lead to a wrong assessment of the negative effects of action fungus itself. The manuscript has shown a modification of such a method that separates the destructive effect of fungi from moisture accompanying the test’s destructive effect. The functional properties selected to prove the proposed modification are changes in the mass and bending strength after subsequent environmental exposure. It was found that intensive action of moisture measured in the culture chamber of about (70 ± 5)%, i.e., for 16 weeks, at (22 ± 2) °C, which was the fungi culture, which was accompanying period, led to changes in the mass of the wood-plastic composites, amounting to 50% of the final result of the fungi resistance test, and changes in the bending strength amounting to 30–46% of the final test result. As a result of the research, the correction for assessing the durability of wood-polymer composites to biological corrosion has been proposed. The laboratory tests were compared with the products’ test results following three years of exposure to the natural environment.


Sign in / Sign up

Export Citation Format

Share Document