scholarly journals Effects and optimization of ratio of particle size grading on compaction density of calcined coke particles

2020 ◽  
Vol 7 (8) ◽  
pp. 085605
Author(s):  
Wenyuan Hou ◽  
Hesong Li ◽  
Mao Li ◽  
Benjun Cheng
Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


2012 ◽  
Vol 256-259 ◽  
pp. 358-361
Author(s):  
Xiang Yun Kong ◽  
Guang Jin Wang ◽  
Xiao Chao Zhou

Apparent particle size grading is the important characteristic of super-high bench dumping site, and the critical factors with the impact of its stability and disaster prevention are the fragmentation distribution and shear strength parameters of granular. With the copper mine dumping site which had the feature of apparent particle size grading, the thesis carried out the study of on-site particle size investigation and indoor laboratory. The particle-size distribution law with the changing of dumping-site height was analyzed and quantitative relationship between the fragmentation distribution and shear strength parameters of granular was discussed. The research results indicated that coarse-grain contents and maximum grain size were increased significantly according to the decreasing of dumping-site height, which showed that the dumping-site had the feature of apparent particle size grading. The coarse particle content in the grain size composition and internal friction angle φ of shear strength parameters increased with the obvious increment of the distribution value B. The relationship between distribution value B and the internal friction angle φ could be expressed by exponential function curve.


2021 ◽  
Vol 73 (3) ◽  
pp. 675-683
Author(s):  
J.M. Saute ◽  
T.T. Tres ◽  
M.P. Osmari ◽  
S.L. Silva ◽  
J.L.P. Daniel ◽  
...  

ABSTRACT The objective of the present study was to evaluate losses, production and polluting potential of the effluent, nutritional value and aerobic stability of silages of Brachiaria brizantha cv. Paiaguás grass, in different particle sizes and compaction density in silage. Three theoretical particle sizes (TTP 5; 8 and 12mm) and three compaction densities (DC 550; 600 and 650kg/m3) were evaluated, distributed in a factorial design (3 x 3), with four repetitions. The highest volume of effluent was found in silages with higher compaction densities (600 and 650kg/m3) and lower TTP (5 and 8mm). The highest chemical oxygen demand and biochemical oxygen demand were registered in the treatment with TTP of 5mm and higher DC (600 and 650kg/m3). Greater in vitro digestibility of DM was verified in the silage chopped at 5 and 8mm. There was no break in aerobic stability for 216 hours. Silage with a low compaction density 550kg/m3 and processing with a theoretical particle size of 12mm reduces effluent losses. In general, the nutritional value of Paiaguás grass was not influenced by the treatments. Different particle sizes and compaction density did not change the aerobic stability of silages.


2022 ◽  
Vol 9 ◽  
Author(s):  
Biao Liu ◽  
Yufei Zhao ◽  
Wenbo Wang ◽  
Biwang Liu

The compaction density of sand-gravel materials has a strong gradation correlation, mainly affected by some material source parameters such as P5 content (material proportion with particle size greater than 5 mm), maximum particle size and curvature coefficient. When evaluating the compaction density of sand-gravel materials, the existing compaction density evaluation models have poor robustness and adaptability because they do not take into full consideration the impact of material source parameters. To overcome the shortcomings of existing compaction density models, this study comprehensively considers the impact of material source parameters and compaction parameters on compaction density. Firstly, asymmetric data were fused and a multi-source heterogeneous dataset was established for compaction density analysis. Then, the Elman neural network optimized by the adaptive simulated annealing particle swarm optimization algorithm was proposed to establish the compaction density evaluation model. Finally, a case study of the Dashimen water conservancy project in China is employed to demonstrate the effectiveness and feasibility of the proposed method. The results show that this model performs high-precision evaluation of the compaction density at any position of the entire working area which can timely correct the weak area of compaction density on the spot, and reduce the number of test pit tests.


1938 ◽  
Vol 140 (1) ◽  
pp. 257-347 ◽  
Author(s):  
Harold Heywood

The paper describes in detail the methods of analysis at present available for measuring the fineness of powdered materials used in engineering and industrial processes. Definitions of particle size and shape are discussed, and examples are given of the size-distribution curves for typical industrial powders. Sieving or screening is used for the size grading of the comparatively coarse particles, and processes involving motion in a fluid for particles smaller than the limit of sieving. The theory of sieving and the relationship between particle size and sieve aperture are discussed. The equivalent sizes of round, square, and slotted apertures have been measured and results are given. The motion of irregularly shaped particles in a fluid is briefly described, and a method is given for calculating the falling velocity of such particles when the fluid flow round the particles is turbulent. The procedures used for the fineness analysis of sub-sieve particles are: elutriation by means of air or water, sedimentation, hydrometer readings, and the obscuring of a beam of light by dilute suspensions of the particles. Each of these processes is fully described, and the respective merits and disadvantages discussed. Tables of the nominal apertures of all the standard sieve series in industrial use, and a bibliography of about 150 references are included in the paper.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document