scholarly journals TiO2-x films for bolometer applications: recent progress and perspectives

Author(s):  
Qiming Zhang ◽  
Ruiyang Yan ◽  
Xiaoyan Peng ◽  
YuShui Wang ◽  
Shuanglong Feng

Abstract The bolometer is widely used in military and civilian infrared imaging due to its advantages of non-cooling, small size and portability. Thermosensitive materials seriously affect the performance of bolometers. As a kind of heat-sensitive material, the TiO2-x material has the advantages of good thermal stability, large-area preparation, and compatibility with the complementary metal-oxide semiconductor (CMOS) process. However, there is almost no review on the application of titanium oxide for bolometers. In this paper, we introduce the bolometer's main thermal and photoelectric performance parameters and the critical technologies to manufacture the bolometer. Finally, we will particularly emphasize the effects of preparation process parameters of TiO2 on the performance parameters temperature coefficient of resistance (TCR), 1/f noise, etc., were studied.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1272
Author(s):  
Zhihua Fan ◽  
Qinling Deng ◽  
Xiaoyu Ma ◽  
Shaolin Zhou

In recent decades, metasurfaces have emerged as an exotic and appealing group of nanophotonic devices for versatile wave regulation with deep subwavelength thickness facilitating compact integration. However, the ability to dynamically control the wave–matter interaction with external stimulus is highly desirable especially in such scenarios as integrated photonics and optoelectronics, since their performance in amplitude and phase control settle down once manufactured. Currently, available routes to construct active photonic devices include micro-electromechanical system (MEMS), semiconductors, liquid crystal, and phase change materials (PCMs)-integrated hybrid devices, etc. For the sake of compact integration and good compatibility with the mainstream complementary metal oxide semiconductor (CMOS) process for nanofabrication and device integration, the PCMs-based scheme stands out as a viable and promising candidate. Therefore, this review focuses on recent progresses on phase change metasurfaces with dynamic wave control (amplitude and phase or wavefront), and especially outlines those with continuous or quasi-continuous atoms in favor of optoelectronic integration.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


Author(s):  
Fang Zhu ◽  
Guo Qing Luo

Abstract In this paper, a millimeter-wave (MMW) dual-mode and dual-band switchable Gilbert up-conversion mixer in a commercial 65-nm complementary metal oxide semiconductor (CMOS) process is presented. By simply changing the bias, the proposed CMOS Gilbert up-conversion mixer can be switched between subharmonic and fundamental operation modes for MMW dual-band applications. With a low local oscillator pumping power of 3 dBm and low dc power consumption of 6 mW, the proposed CMOS Gilbert up-conversion mixer exhibits a measured conversion gain of −0.5 ± 1.5 dB from 37 to 50 GHz and 2.5 ± 1.5 dB from 17.5 to 32 GHz for the subharmonic and fundamental modes, respectively.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 369 ◽  
Author(s):  
Padmanabhan Balasubramanian ◽  
Nikos Mastorakis

Addition is a fundamental operation in microprocessing and digital signal processing hardware, which is physically realized using an adder. The carry-lookahead adder (CLA) and the carry-select adder (CSLA) are two popular high-speed, low-power adder architectures. The speed performance of a CLA architecture can be improved by adopting a hybrid CLA architecture which employs a small-size ripple-carry adder (RCA) to replace a sub-CLA in the least significant bit positions. On the other hand, the power dissipation of a CSLA employing full adders and 2:1 multiplexers can be reduced by utilizing binary-to-excess-1 code (BEC) converters. In the literature, the designs of many CLAs and CSLAs were described separately. It would be useful to have a direct comparison of their performances based on the design metrics. Hence, we implemented homogeneous and hybrid CLAs, and CSLAs with and without the BEC converters by considering 32-bit accurate and approximate additions to facilitate a comparison. For the gate-level implementations, we considered a 32/28 nm complementary metal-oxide-semiconductor (CMOS) process targeting a typical-case process–voltage–temperature (PVT) specification. The results show that the hybrid CLA/RCA architecture is preferable among the CLA and CSLA architectures from the speed and power perspectives to perform accurate and approximate additions.


2018 ◽  
Vol 27 (13) ◽  
pp. 1830008
Author(s):  
Jin Wu ◽  
Pengfei Dai ◽  
Jie Peng ◽  
Lixia Zheng ◽  
Weifeng Sun

The fundamental theories and primary structures for the multi-branch self-biasing circuits are reviewed in this paper. First, the [Formula: see text]/[Formula: see text] and [Formula: see text]/[Formula: see text] structures illustrating the static current definition mechanism are presented, including the conditions of starting up and entering into a stable equilibrium point. Then, the AC method based on the loop gain evaluation is utilized to analyze different types of circuits. On this basis, the laws which can couple the branches of self-biasing circuits to construct a suitable close feedback loop are summarized. By adopting Taiwan Semiconductor Manufacturing Company (TSMC)’s 0.18[Formula: see text][Formula: see text]m complementary metal–oxide–semiconductor (CMOS) process with 1.8[Formula: see text][Formula: see text] supply voltage, nearly all the circuits mentioned in the paper are simulated in the same branch current condition, which is close to the corresponding calculated results. Therefore, the methods summarized in this paper can be utilized for distinguishing, constructing, and optimizing critical parameters for various structures of the self-biasing circuits.


2021 ◽  
Author(s):  
Akhil Dodda ◽  
Darsith Jayachandran ◽  
Shiva Subbulakshmi Radhakrishnan ◽  
Saptarshi Das

Abstract Natural intelligence has many dimensions, and in animals, learning about the environment and making behavioral changes are some of its manifestations. In primates vision plays a critical role in learning. The underlying biological neural networks contain specialized neurons and synapses which not only sense and process the visual stimuli but also learns and adapts, with remarkable energy efficiency. Forgetting also plays an active role in learning. Mimicking the adaptive neurobiological mechanisms for seeing, learning, and forgetting can, therefore, accelerate the development of artificial intelligence (AI) and bridge the massive energy gap that exists between AI and biological intelligence. Here we demonstrate a bio-inspired machine vision based on large area grown monolayer 2D phototransistor array integrated with analog, non-volatile, and programmable memory gate-stack that not only enables direct learning, and unsupervised relearning from the visual stimuli but also offers learning adaptability under photopic (bright-light), scotopic (low-light), as well as noisy illumination conditions at miniscule energy expenditure. In short, our “all-in-one” hardware vision platform combines “sensing”, “computing” and “storage” not only to overcome the von Neumann bottleneck of conventional complementary metal oxide semiconductor (CMOS) technology but also to eliminate the need for peripheral circuits and sensors.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4149
Author(s):  
Xiang Li ◽  
Rui Li ◽  
Chunge Ju ◽  
Bo Hou ◽  
Qi Wei ◽  
...  

Micromachined gyroscopes require high voltage (HV) for actuation and detection to improve its precision, but the deviation of the HV caused by temperature fluctuations will degrade the sensor’s performance. In this paper, a high-voltage temperature-insensitive charge pump is proposed. Without adopting BCD (bipolar-CMOS-DMOS) technology, the output voltage can be boosted over the breakdown voltage of n-well/substrate diode using triple-well NMOS (n-type metal-oxide-semiconductor) transistors. By controlling the pumping clock’s amplitude continuously, closed-loop regulation is realized to reduce the output voltage’s sensitivity to temperature changes. Besides, the output level is programmable linearly in a large range by changing the reference voltage. The whole circuit has been fabricated in a 0.18- μ m standard CMOS (complementary metal-oxide-semiconductor) process with a total area of 2.53 mm 2 . Measurements indicate that its output voltage has a linear adjustable range from around 13 V to 16.95 V, and temperature tests show that the maximum variations of the output voltage at − 40 ∼ 80 ∘ C are less than 1.1%.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1181 ◽  
Author(s):  
Simone Becchetti ◽  
Anna Richelli ◽  
Luigi Colalongo ◽  
Zsolt Kovacs-Vajna

This paper provides the results of a comprehensive comparison between complementary metal oxide semiconductor (CMOS) amplifiers with low susceptibility to electromagnetic interference (EMI). They represent the state-of-the-art in low EMI susceptibility design. An exhaustive scenario for EMI pollution has been considered: the injected interference can indeed directly reach the amplifier pins or can be coupled from the printed circuit board (PCB) ground. This is also a key point for evaluating the susceptibility from EMI coupled to the output pin. All of the amplifiers are re-designed in a United Microelectronics Corporation (UMC) 180 nm CMOS process in order to have a fair comparison. The topologies investigated and compared are basically derived from the Miller and the folded cascode ones, which are well-known and widely used by CMOS analog designers.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4731
Author(s):  
Wei-Ren Chen ◽  
Yao-Chuan Tsai ◽  
Po-Jen Shih ◽  
Cheng-Chih Hsu ◽  
Ching-Liang Dai

The fabrication and characterization of a magnetic micro sensor (MMS) with two magnetic field effect transistors (MAGFETs) based on the commercial complementary metal oxide semiconductor (CMOS) process are investigated. The magnetic micro sensor is a three-axis sensing type. The structure of the magnetic microsensor is composed of an x/y-MAGFET and a z-MAGFET. The x/y-MAGFET is employed to sense the magnetic field (MF) in the x- and y-axis, and the z-MAGFET is used to detect the MF in the z-axis. To increase the sensitivity of the magnetic microsensor, gates are introduced into the two MAGFETs. The sensing current of the MAGFET enhances when a bias voltage is applied to the gates. The finite element method software Sentaurus TCAD was used to analyze the MMS’s performance. Experiments show that the MMS has a sensitivity of 182 mV/T in the x-axis MF and a sensitivity of 180 mV/T in the y-axis MF. The sensitivity of the MMS is 27.8 mV/T in the z-axis MF.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4222
Author(s):  
Chao Geng ◽  
Qingji Sun ◽  
Shigetoshi Nakatake

Perceptron is an essential element in neural network (NN)-based machine learning, however, the effectiveness of various implementations by circuits is rarely demonstrated from chip testing. This paper presents the measured silicon results for the analog perceptron circuits fabricated in a 0.6 μm/±2.5 V complementary metal oxide semiconductor (CMOS) process, which are comprised of digital-to-analog converter (DAC)-based multipliers and phase shifters. The results from the measurement convinces us that our implementation attains the correct function and good performance. Furthermore, we propose the multi-layer perceptron (MLP) by utilizing analog perceptron where the structure and neurons as well as weights can be flexibly configured. The example given is to design a 2-3-4 MLP circuit with rectified linear unit (ReLU) activation, which consists of 2 input neurons, 3 hidden neurons, and 4 output neurons. Its experimental case shows that the simulated performance achieves a power dissipation of 200 mW, a range of working frequency from 0 to 1 MHz, and an error ratio within 12.7%. Finally, to demonstrate the feasibility and effectiveness of our analog perceptron for configuring a MLP, seven more analog-based MLPs designed with the same approach are used to analyze the simulation results with respect to various specifications, in which two cases are used to compare to their digital counterparts with the same structures.


Sign in / Sign up

Export Citation Format

Share Document