Fully roll-to-roll gravure printed 4-bit code generator based on p-type SWCNT thin-film transistors

Author(s):  
Jinhwa Park ◽  
Sagar Shrestha ◽  
Sajjan Parajuli ◽  
Younsu Jung ◽  
Gyoujin Cho

Abstract Current Si-based technologies have reached their intrinsic limits in meeting the demands of flexible electronics where free-form factors and low cost are critical for successful applications. For this reason, roll-to-roll (R2R) gravure printing has been considered a way to achieve the free-form factor and the low cost. However, the R2R gravure systems (servomechanism, electronic ink, printing process, and device design) could not integrate a number of thin-film transistors (TFTs) with small threshold voltage (Vth) variations. Therefore, we designed a 4-bit code generator by combining one ring oscillator, 6 NAND gates, and one OR gate based on 37 p-type single-walled carbon nanotube (SWCNT) TFTs as a concept devices to test the R2R gravure system. First, ring oscillators with different physical dimensions were printed on a poly (ethylene terephthalate) (PET) roll using the R2R gravure. Then, we extracted important factors (channel length, channel width, and SWCNT network density) to optimize the Vth variation and demonstrated a 4-bit code generator integrated with 37 p-type TFTs. This work will be further extended in the near future to develop R2R gravure printed Near-Field Communication labels for smart packaging.

2021 ◽  
Vol 16 (2) ◽  
pp. 1-11
Author(s):  
José Enrique Eirez Izquierdo ◽  
José Diogo da Silva Oliveira ◽  
Vinicius Augusto Machado Nogueira ◽  
Dennis Cabrera García ◽  
Marco Roberto Cavallari ◽  
...  

This work is focused on the bias stress (BS) effects in Organic Thin-Film Transistors (OTFTs) from poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) on both highly-doped Si and glass substrates. While the former had a thermally-grown SiO2 dielectric, the latter demanded an alternative dielectric that should be capable to withstand bottom contact lithography, as well as semiconducting thin-film deposition. In addition, it should represent one more step towards flexible electronics. In order to do that, poly(4-vinylphenol) (PVP) was blended to poly(melamine-co-formaldehyde) methylated (PMF). OTFTs on glass with a cross-linked polymer dielectric had a charge carrier mobility (μ) of 4.0x10-4 cm2/Vs, threshold voltage (VT) of 18 V, current modulation (ION/OFF) higher than 1x102, and subthreshold slope (SS) of -7.7 V/dec. A negative BS shifted VT towards negative values and produced an increase in ION/OFF. A positive BS, on the other hand, produced the opposite effect only for OTFTs on Si. This is believed to be due to a higher trapping at the PVP:PMF interface with PBTTT-C14. Modeling the device current along time by a stretched exponential provided shorter time constants of ca. 105 s and higher exponents of 0.7–0.9 for devices on glass. Due to the presence of increased BS effects, the application of organic TFTs based on PVP:PMF as flexible sensors will require compensating circuits, lower voltages or less measurements in time. Alternatively, BS effects could be reduced by a dielectric surface treatment.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1672 ◽  
Author(s):  
Alwin Daus ◽  
Songyi Han ◽  
Stefan Knobelspies ◽  
Giuseppe Cantarella ◽  
Gerhard Tröster

In this work, we show the performance improvement of p-type thin-film transistors (TFTs) with Ge 2 Sb 2 Te 5 (GST) semiconductor layers on flexible polyimide substrates, achieved by downscaling of the GST thickness. Prior works on GST TFTs have typically shown poor current modulation capabilities with ON/OFF ratios ≤20 and non-saturating output characteristics. By reducing the GST thickness to 5 nm, we achieve ON/OFF ratios up to ≈300 and a channel pinch-off leading to drain current saturation. We compare the GST TFTs in their amorphous (as deposited) state and in their crystalline (annealed at 200 °C) state. The highest effective field-effect mobility of 6.7 cm 2 /Vs is achieved for 10-nm-thick crystalline GST TFTs, which have an ON/OFF ratio of ≈16. The highest effective field-effect mobility in amorphous GST TFTs is 0.04 cm 2 /Vs, which is obtained in devices with a GST thickness of 5 nm. The devices remain fully operational upon bending to a radius of 6 mm. Furthermore, we find that the TFTs with amorphous channels are more sensitive to bias stress than the ones with crystallized channels. These results show that GST semiconductors are compatible with flexible electronics technology, where high-performance p-type TFTs are strongly needed for the realization of hybrid complementary metal-oxide-semiconductor (CMOS) technology in conjunction with popular n-type oxide semiconductor materials.


RSC Advances ◽  
2018 ◽  
Vol 8 (30) ◽  
pp. 16788-16799 ◽  
Author(s):  
Li Zhu ◽  
Gang He ◽  
Jianguo Lv ◽  
Elvira Fortunato ◽  
Rodrigo Martins

Solution based deposition has been recently considered as a viable option for low-cost flexible electronics.


2016 ◽  
Vol 4 (40) ◽  
pp. 9438-9444 ◽  
Author(s):  
Fukai Shan ◽  
Ao Liu ◽  
Huihui Zhu ◽  
Weijin Kong ◽  
Jingquan Liu ◽  
...  

High-performance p-type NiOx thin-film transistors are fabricated via a low-cost solution process and exhibit a high mobility of around 15 cm2 V−1 s−1.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2021 ◽  
Vol 13 (3) ◽  
pp. 4156-4164
Author(s):  
Mari Napari ◽  
Tahmida N. Huq ◽  
David J. Meeth ◽  
Mikko J. Heikkilä ◽  
Kham M. Niang ◽  
...  

1993 ◽  
Vol 297 ◽  
Author(s):  
Byung Chul Ahn ◽  
Jeong Hyun Kim ◽  
Dong Gil Kim ◽  
Byeong Yeon Moon ◽  
Kwang Nam Kim ◽  
...  

The hydrogenation effect was studied in the fabrication of amorphous silicon thin film transistor using APCVD technique. The inverse staggered type a-Si TFTs were fabricated with the deposited a-Si and SiO2 films by the atmospheric pressure (AP) CVD. The field effect mobility of the fabricated a-Si TFT is 0.79 cm2/Vs and threshold voltage is 5.4V after post hydrogenation. These results can be applied to make low cost a-Si TFT array using an in-line APCVD system.


2018 ◽  
Vol 4 (7) ◽  
pp. 1800032 ◽  
Author(s):  
Cristina Fernandes ◽  
Ana Santa ◽  
Ângelo Santos ◽  
Pydi Bahubalindruni ◽  
Jonas Deuermeier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document