miR-92b-3p Promotes Colorectal Carcinoma Cell Proliferation, Invasion, and Migration by Inhibiting FBXW7 In Vitro and In Vivo

2018 ◽  
Vol 37 (5) ◽  
pp. 501-511 ◽  
Author(s):  
Lei Gong ◽  
Mingyang Ren ◽  
Zhenbing Lv ◽  
Yuling Yang ◽  
Ziwei Wang
2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Shutao Pan ◽  
Ming Shen ◽  
Min Zhou ◽  
Xiuhui Shi ◽  
Ruizhi He ◽  
...  

AbstractDysfunction in long noncoding RNAs (lncRNAs) is reported to participate in the initiation and progression of human cancer; however, the biological functions and molecular mechanisms through which lncRNAs affect pancreatic cancer (PC) are largely unknown. Here, we report a novel lncRNA, LINC01111, that is clearly downregulated in PC tissues and plasma of PC patients and acts as a tumor suppressor. We found that the LINC01111 level was negatively correlated with the TNM stage but positively correlated with the survival of PC patients. The overexpression of LINC01111 significantly inhibited cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, the knockdown of LINC01111 enhanced cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Furthermore, we found that high expression levels of LINC01111 upregulated DUSP1 levels by sequestering miR-3924, resulting in the blockage of SAPK phosphorylation and the inactivation of the SAPK/JNK signaling pathway in PC cells and thus inhibiting PC aggressiveness. Overall, these data reveal that LINC01111 is a potential diagnostic biomarker for PC patients, and the newly identified LINC01111/miR-3924/DUSP1 axis can modulate PC initiation and development.


2017 ◽  
Vol 42 (5) ◽  
pp. 1847-1856 ◽  
Author(s):  
Zhi-Dong Lv ◽  
Hai-Bo Wang ◽  
Xiang-Ping Liu ◽  
Li-Ying Jin ◽  
Ruo-Wu Shen ◽  
...  

Background/Aims: Epithelial-mesenchymal transition (EMT) is recognized as a crucial mechanism in breast cancer progression and metastasis. Paired-related homeobox 2 (Prrx2) has been identified as a new EMT inducer in cancer, but the underlying mechanisms are still poorly understood. Methods: The expression of Prrx2 was assessed by immunohistochemistry in breast cancer tissues to evaluate the clinicopathological significance of Prrx2, as well as the correlation between Prrx2 and EMT. Short hairpin RNA knockdown of Prrx2 was used to examine cellular effects of Prrx2, detecte the expression of Wnt/β-catenin signaling and EMT-associated proteins, and observe cell proliferation, invasion and migration abilities in vitro and in vivo. Results: Clinical association studies showed that Prrx2 expression was related to tumor size, lymph node metastasis, tumor node metastasis stages, EMT and poor survival. Results also showed that knockdown of Prrx2 could alter cell morphology, suppressed the abilities of cell proliferation, invasion and migration in breast cancer. Moreover, silencing of Prrx2 induced the mesenchymal-epithelial transition and prevented nuclear translocation of β-catenin, inhibited wnt/β-catenin signaling pathway. Conclusion: Our study indicated that Prrx2 may be an important activator of EMT in human breast cancer and it can serve as a molecular target of therapeutic interventions for breast cancer.


2020 ◽  
Author(s):  
Jinfeng Cao ◽  
Xue Zhao ◽  
Yan Ma ◽  
Jian Yang ◽  
Fuqiang Li

Background: Total saponins from Rubus parvifolius L. (TSRP) is the main bioactive fractions responsible for the antitumor activities. The work was aimed to evaluate the anti-tumor effect of TSRP in malignant melanoma in vitro and in vivo. Methods and Results: Anti melanoma cell proliferation, invasion and migration effect of TSRP were detected in human malignant melanoma A375 cells under the indicated time and dosages. In vivo anti-tumor effect of TSRP was measured in A375 xenograft immunodeficient nude mice. Sixty A375 xenografts were randomly divided into five groups: Vehicle, cyclophosphamide (CTX, 20 mg/kg), TSRP (25 mg/kg), TSRP (50 mg/kg) and TSRP (100 mg/kg) groups for 14 days’ treatment. In addition, the melanoma cell metastasis in lung in vivo of TSRP was detected in A375 tail vein injection mice, and the histopathalogical analysis of the metastasis lung was detected by H & E stating. TSRP was significantly inhibited the cell proliferation, invasion and migration of A375 in vitro at the indicated time and dosages. TSRP treatment was effectively blocked the tumor growth in immunodeficient nude mice. In addition, TSRP was also significantly inhibited the melanoma metastasis of lung. Conclusion: This study indicated that the TSRP has a remarkable anti malignant melanoma effect, which mainly through the inhibition of the cell invasion,migration and tumor metastasis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haiyang Xu ◽  
Guifang Zhao ◽  
Yu Zhang ◽  
Hong Jiang ◽  
Weiyao Wang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a significant role in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the effects of exosomal miR-133b derived from MSCs on glioma cell behaviors. Methods Microarray-based analysis identified the differentially expressed genes (DEGs) in glioma. The expression patterns of EZH2 and miR-133b along with interaction between them were clarified in glioma. The expression of miR-133b and EZH2 in glioma cells was altered to examine their functions on cell activities. Furthermore, glioma cells were co-cultured with MSC-derived exosomes treated with miR-133b mimic or inhibitor, and EZH2-over-expressing vectors or shRNA against EZH2 to characterize their effect on proliferation, invasion, and migration of glioma cells in vitro. In vivo assays were also performed to validate the in vitro findings. Results miR-133b was downregulated while EZH2 was upregulated in glioma tissues and cells. miR-133b was found to target and negatively regulate EZH2 expression. Moreover, EZH2 silencing resulted in inhibited glioma cell proliferation, invasion, and migration. Additionally, MSC-derived exosomes containing miR-133b repressed glioma cell proliferation, invasion, and migration by inhibiting EZH2 and the Wnt/β-catenin signaling pathway. Furthermore, in vivo experiments confirmed the tumor-suppressive effects of MSC-derived exosomal miR-133b on glioma development. Conclusion Collectively, the obtained results suggested that MSC-derived exosomes carrying miR-133b could attenuate glioma development via disrupting the Wnt/β-catenin signaling pathway by inhibiting EZH2, which provides a potential treatment biomarker for glioma.


2020 ◽  
Author(s):  
Lei Chang ◽  
Junying Zhou ◽  
Wanjia Tian ◽  
Mengyu Chen ◽  
Ruixia Guo ◽  
...  

Abstract Background Extracellular vesicle (EV) that delivered microRNAs (miRNAs) have been found as the important biomarkers participating in the pathological mechanism of ovarian cancer. Consequently, this study sought to examine the underlying mechanism of mesenchymal stem cell (MSC)-derived EVs containing miR-4488 in ovarian cancer. Methods The normal ovarian tissues and ovarian cancer tissues were extracted, and the information of MSC-EV miRNA was obtained by Bioinformatics analysis. RT-qPCR and western blot analysis were applied to detect miR-4488 and α/β-hydrolase domain-containing (ABHD)8 expression followed by determination of relationship between miR-4488 and ABHD8 by dual-luciferase reporter assay. After transfection with different plasmids and treatment with DMSO or GW4869 (inhibitor of EV), the regulatory roles of MSC-EV-miR-4488 in invasion, proliferation, apoptosis, and migration of cancer cells were explored. Besides, xenograft tumor in nude mice was conducted to explore the role of miR-4488 and ABHD8 in ovarian cancer in vivo. Results miR-4488 was poorly expressed and ABHD8 was highly expressed in ovarian cancer cells and tissues. ABHD8 was a target gene of miR-4488 while the knockdown of ABHD8 resulted in the suppression of proliferation, invasion, and migration while promoting the apoptosis of cancer cells. Functionally, MSC-EV-derived miR-4488 inhibited the expression of ABHD8. Additionally, miR-4488 over-expressed in MSC-EVs inhibited the cell proliferation, invasion, and migration through down-regulation of ABHD8 expression. At last, these in vitro findings were also confirmed in vivo. Conclusion To summarize, miR-4488 overexpressed in MSC-EVs suppressed ABHD8 expression to inhibit the cancer cell proliferation, invasion, and migration, thus suppressing ovarian cancer.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongzhang Shen ◽  
Fuqiang Ye ◽  
Dongchao Xu ◽  
Liangliang Fang ◽  
Xiaofeng Zhang ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


2013 ◽  
Vol 6 (4) ◽  
pp. 927-932 ◽  
Author(s):  
HAIBO WANG ◽  
ZHUANG YU ◽  
SHIHAI LIU ◽  
XIANGPING LIU ◽  
AIHUA SUI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document